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PREFACE

Mechanical principle and mathematical theory are emphasized in
this book. All the traditional principles along with features of recently
developed slide rules are discussed. Distinctive characteristics are the
representation of alternative scale arrangements and suggestions for
recognizing the nature of seales and methods of operation on any slide
rule, regardless of scale marking. This approach leads fo a better grdsp
of underlying principles and, consequently, grester facility. O\

Large parts of Chapters 1 and 2, which make up nearly hali(the book,
have becn written for the person w 1th no knowledge of al gebra; (Greater
familiarity with mathemstics is necessary in order to }186 the trigono-
metric scales and fo carry out logarithmie operationge Thus, Chapters
3 and 4 assume an understanding of trigonometry 2udYogarithms.

Obviously, each reader should have his own slidéwtie and should use it
to follow the examples. A sufficient number of problems should be solved
to develop speed and confidence; not all of, tﬁe‘practice probiems should
be from the one thousand a{l@qw%m rgplems of Part I—some
should be selected from the practical problems of Part 1II. The problems
on preparation of graphs, at the very ‘end of several chapters, will sppeal
to many users.  Answers to altvmate rows of problems in Part I are pro-
vided in the Appendix. ,,\

An additional feature i .Qhe summary at the end of each chapter in
Part I, which will aid i I&YIBW after the study of the chapter has been
completed. Also, if the~use of the slide rule is discontinued for a time,
the summaries will prm ide a ready reference for regaining skill.

The author 1&‘mdebted to Eugene Dietzgen Company, Keuffel and
Esser Compa,\( Pickett and Iickel, Incorporated, and Frederick Post
Company for prowdmg the catalog illustrations of slide rules in the
Appendlx\ ’

The work of M. H. Bolds and W. E. Thomas, who prepared most of the
drawings, is appreciated. A number of colleagues helped with the prac-
tical problems of Part IT: the assistanee of Professors A. A, Alberts, F. J.
Bogardus, Herschel Hunt, M. B, Scott, and I. Walerstein is gratefully
acknowledged. And finally, Professor W. E. Fontaine helped set up the
general pattern and arrangement of the book in anticipation of co-author-
ship, which it was not possible to carry through. He also provided a eon-
siderable number of the problems. His counsel and assistance are deeply
appreciated.

West Lafayette, Indiana J. N, Arnold
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PART |

The Basic Slide Rule Principle .-
Ll L3 { .\ >
Typical Examples and Exercises,*
R
A

Regardless of its shape ot size, any slide rulg performs its mathematical
wizardry by subtracting, adding, or equating léné;ths on funectional seales;
the particular relationship solved depends upon the type of functional
scale and the operation to b¥ p‘éﬁ&fﬂi‘éﬁﬁ "WRePhH& Jubtraction, addition,
or equating of lengths.

Log scales having equal eye lmlongths are the subject of Chapter 1.
T.og scales with simple ¢ yrle—lengfh ratios of 2:1, 3:1, 3:2, are discussed
in Chapter 2. The use of i )&3111 scales and log tan scales and variations
of them, along with simple log scales, are topies n Chapter 3. The use
of LogLog scales and, umform scales along with the log scales arcincluded
in Chapter 4.

These few typo&@}functlollal scales will solve a tremendous number of
practical comp%&tmns but they do not exhaust the possibilities by any
means. Othgrtypes of functional scales, in infinite variety, can be made
-—and ;Qafﬁ? ‘are useful.

The\Qcélue equations of the Appendix, Art. A.2, and references on special
glide rules* should help one who masters Part I to enlarge his knowledge
and understanding of slide rules.

* Hoclscher, R. P, J, N. Arnold, and 8. H. Pierce, Graphic Aids in Enginecring
Compultation, Chap. 6 {“Bpecial Slide Rules™). New York: MeGraw-Hill Book
Co., 1852,
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1.1, Types of Slide Rules, Stide Fules are made in a variety of shapes,
including cylindrical, eircular,{flat spiral, and straight. The straight
glide rule is much more ¢ n{fnﬁnly used than the other shapes, so this
book is limited to discussion“of the straight slide rule.

The straight slide rule ponsists of three principal parts as shown by the
diagrammatic pict-ure:s; Figs. 1.1 and 1.2. These parts are: the frame
(or base), the slidﬁ’,}nd the runner (or glass), The hairline is a scribed
mark on the g}%s’s;'

Ranme {or Bose) Runner (or Glass) Stide
N \

b 4
N

Y ™

 _ A-—Fairline

J_l i
Fig. 1.1. Components of Mannheim-Type Slide Rule

The two forms of straight slide rules in ¢common use are the duplex
type, Fig. 1.2, having seales on both front and back, and the Mannheim
type, Fig. 1.1, with a solid back to the frame, and therefore having scales
on one side only. But some Mannheim-type slide rules do have scales on
both faces of the slide; the scales on the back of the slide may be used by

3



4 THE BASIC SLIDE RULE PRINCIPLE

withdrawing the slide and turning it over, or by reading opposite a gauge
mark or scribed glass on the end of the frame. '

The beginner with a slide rule often experiences a feeling of hopele.s.%
ness when he notes that there are some twenty scales on a Loglog slide
rule, all of which are strange and meaningless when first examiled.
Yowever, by taking up the mathematical operations and associated slide

rule seales one at a time, confidence and skill in the use of the slide rule
can be developed,

N\
inme {or Base) Rupner for Glass) ,‘E\{akz’e
N\ ©
) T K c’ \
: -—-—Ha{p&gg !
R = A

(D
Fig. 1.2, Components of Dqu’x-Type Slide Rule
% 3

1.2. Mechanical Principle of the(Stide Rue.
fundamentally simple, feature of the slide rule is that it performs division,
multiplication, and several other mathematical operations by one or

wwwgﬁgg&i{%%salgywﬁpce of fhcf following basic mechanical operations:

a. Subtract lengthg "
b. Add lengtbgé‘..’
¢. Equate lengths

Most of the gali&e rule seales are not uniformly gruduated. However, the
mechanicabﬁ;ﬁnciple is shown in ver

The remarkable, but

y stmple fashion by the slide rule of
Y
A& —~
~O A F it r0e e ny e
\/ al@s‘tsa@ésl‘ol'lfa:'sﬁ_sj

Fig. 1.3. Slide Rule for Subtraction or Addition

Operation: Set valuc of B oppesite value of §-

Read D=5 _p opposife arrow
Erample:7 -5 =9

Bet arrow at D

Opposite value of R read 8=D+R
Example:2 + 5 = 7

-3, which hag uniformly graduated scales.

having more and finep graduations could be g

equate over a much wider range of numbers th
1.3. :

A slide rule of this form
ed to add, subtract, or
an the few shown in Fig.



DIVISION, MULTIPLICATION, RELATED TOPICS 5

A great variety of slide rules have been devised in the three hundred
years since the first one for performing division and multiplication was
prepared, but the mechanical principle of operation is unchanged. Ajl
straight slide rules operate by adding, subtracting, or equating lengths in
the manner of Fig. 1.3—but using scales which are non-uniformly
graduated,

If one clearly understands the mechanical principle and the way it
relates to the mathematical principle, it is possible to identif y the suitable
scales on any slide rule to use for division or multiplication; also, the
method of operation is easily devised. 0\

1.3. Mathematical Principle of the Slide Rule for Division and.Malti-
plication. It is not necessary to understand the mathematicgl \thegry in
order to use a slide rule, but if the theory is understood, it Is/casier to
develop skill in slide rule use, and casier t6 learn new appli¢ations.

Logarithms of numbers underlic division sand multiplieation as per-
formed with the slide rule, Logarithms are cxplaingd'in algebraic terms
in the Summary, page 48. Their use is described ih'words as follows:

X'\ d
Drvision: If the logarithm of one numbgrds sublracted Jrom the
logarithm. of another, the differencd 48 the logarithm of the
quotient. www.dbraulilqrﬁr}.y,org,jn .
MurripLicaTioN: If the Eogarithpyqf the first factor is added to the
logarithm of a second factor, the sum is equal to the logarithm of
the product. o
22\

A selected few numberxi{nd their approximate logarithms are given

here in the form of a tabls. The logarithm principle may be verified

easily by using these/tible values to check a few examples, such as:

40/8 = 5; 20/5 = 4 5 X 6 = 30;2 X 3 = 6; and others.

o\J.‘
:..\.;,
ot N Nurmber
T .\'\\ 2 " 5 [ T 8 9 I8
[ A\ | ! | ] [ N
ANTT | ] i I ] | ] 1
e A 2 3 4 8 B T 8 E:] T3
9 ) Pslog N
N Number
10 20 30 40 50 [:1:] 7O BO B0 WO
| | | | {! | I | S
l!o IP! I?Z I.|3 I£1 I.IE LB LT 8 15 20
PsLog N

Fig. 1.4. Graphic Logarithm of Numbers
Major Graduvation (nly S8hown

‘The same table information is presented in graphic form in Fig. 1.4,
where the non-uniform charscter of the logarithmic scale is perhaps more
clearly evident. From 1 to 2 is about 30 per cent of the distance from



6 THE BASIC SLIDE RULE PRINCIPLE

110 10. The distance from 8 to 9 and the distance from 9 to 10 are much
less than the distance from 1 $o 2.

No.,, N p=log N No, N p=IlogN

1 0.000 10 1.000
2 0.301 20 1.301
3 0.477 30 1.477
4 0.602 40 1.602
5 0.699 50 Le9g
6 0.778 60 1.778
7 0.845 70 1.845 (%,
8 0.903 80 1.908\
9 0.954 90 1954
10 1.000 100 +2.000

log 40 = 1.602 log 2 ='0+301

—log 8 = —0.903 log 3\ 0.477
log 5= 0.699 lopB = 0.778

It is possible to use any number as a I:gaée\ for logarithms, but only two
numbers are in common use, 10 and eNJ>Throughout Chapters 1, 2, and
3, 10 is understood to be the base uiiless otherwise noted. In Chapter 4
v R R DYy e Wsed . A\
1.4. Recognition of Scales-for Division and Multiplication. In view
of the foregoing explanatiéihof the mechanical and mathematical prin-
ciple, it should be evidggi’t}ha,t there are two requirements for a slide rule
to perform division erunultiplieation. There must be two logarithmie
scales, one movableyrelative to the other; the cycle length, or distance
from 1 to 10, m@st be the same for both scales.
Loga,rithmfié stales can be recognized by observing if the distance from
1 to 2 ig 30,per cent of the distance from 1 to 10, as in Fig. 1.4, Also,
the di?,lr&m"e from 1 to 2 must equal the distance from 2 to 4. In faet
the distance on a particular logarithmie scale between any two numbers
ha¥ing a ratio of 2:1 is the same. Observation of this distance between

\pﬁmbers 1Tand 2, or 2 and 4, or 5 and 10 may be called the “ratio test for
togarithmic scales.”

Observation also will readily indicate if the
rithmic scales are equal.

Although the earliest form of slide rule consisted of two marked sticks
placed side by side unconfined by any frame and without an indicator
glass, many commercial slide rules now have more than one pair of scales
which may be used for divisien or multiplieation.

The beginner may find it helpful to apply the ratio test and cycle length

tempt to identify all pairs of scales which
multiplication,

cycle lengths for two loga-

_might be used for division or
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1.6. Commercial Slide Rules.! It would take more pages than ean he
used here for the purpose to describe in detail the many different forms of
straight slide rules which have been made and sold. Therefore, it is
intended to limit the specific information in this book to a few of the
widely used slide rules. Illustrations of several commercial slide rules
are shown in the Appendix, pages 182-189, along with a table of data
summarizing the properties and uses of some of their scales. At various
places throughout the book, reference is made to the Appendixillustra-
tions and practical features of the various slide rules are shown.

Thus, by applying the 2:1 ratio test of Art. 1.4, it may be obsérved
that each of the various commercial slide rules has 5 or more logdrishmic
scales. In particular, the reader may verify that the Mangheim-type -
slide rule, Fig. A.1, has logarithmic scales labelled A, B, §\D, and CL
The mated pairs on slide and frame are A and B, C an;lff).

The LogLog Duplex Deci-Trig slide rule of Fig, 203 has logarithmie
scales marked DF, CF, CIF, CI, C, I, on the front\wwliile on the back the
scales marked K, A, B, and D arc logarithmic. o\

The Deci-LogLog slide rule is shown in Fig. %A%, from which it may be
determined by the 2:1 ratio test that there’are/logarithmic scales marked
DF, CF, CI, C, D, DI, v/, v/, OE/x, CF/u. Of this group the
mated pairs are C and D, QE@Q@M@@@ME{EL CF/y and DF/y.

The other slide rules shown, Figs,A%2, A4, A6, A.7, and A8, are much
like one or another of these threg iii'the arrangement and labelling of the
logarithmic scales. They differ from the three first-mentioned prineci-
pally in the nature or pl e'\ljnént of other scales.

1.6. Graduation of Sca&. A knowledge of which seales to use and an
ability {o read the scalesdre the first steps in learning to use the slide rule.
The non-uniform n@hiite of the logarithmic seale makes it slightly more
difficult to read th&n the ordinary footrule or yardstick, but the placing
of numbers at\major graduation marks and the use of different lengths
of graduati@‘n marks for subdivisions are similar to the footrule. The
logarithm{c'écale 1s graduated in decimal parts in contrast to the 1/2,1/4,
and £/8)¢ften found on the footrule. That is, the slide rule graduations
are spdced 1/2, 1/5, or 1/10 units.

The scales marked C and D are most frequently used for division and
multiplication; C and D scales are shown on all of the selected commereial
slide rules, and this marking is very common on other makes of slide rules
not illustrated. It is, therefore, convenient to begin with a consideration
of the graduation plan for C and D scales.

The C and D scales on all slide rules are numbered at the major gradu-
ation marks corresponding to the numbers 1, 2, 3-—on up to 10. The

* Far convenience and brevity the term “eommercial” slide rle is used throughout
the book to refer to a mass-produced slide rule for general purpose caleulations,
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interval between each two major graduations is subdivided into 10 parts;
on the three-section picture, Fig. 1.5, these are denoted as minor gradu-
ations. Almost all commereial slide rules carry small numbers at the
minor graduations between 1 and 2, but not for any other interval. The
major number is omitted from these. That is, the small 1, 2, 3, and
80 on, near the left end of the C and 1) scales of Fig. 1.5 represent 1.1,
1.2, 1.3, and so forth, up to 1.9,

Left Index Typical Minor Graduaﬁon:‘7 'S

5 El & i

i
!__ Section I

“C Scale Typical Major Gradoations

Z 0-(;! ’Sécf;oﬂ F/y Fsrg
. AND.O2 foterval ]
D Scale o\ “ 008
ne
D N\

S Typical Major Groduations

‘C Secale (~Typical Minor Graduations / \N
FMEN !I I?H Ii 13:“ |Er el
3 \ a\ 5 & 8‘ ! T ] ' ‘

azg%; ki_D — Section T X
Y cale - Q.05 Interval . .
\ ™ Right lrnde

Fig. 1.6. Nature of Scale Graduation
10-inch Log Sesle

I% will be observed that the minor graduation strokes are made as long
as or lcmger. than the strokes for major graduations and the 0.5 marks are
made especially long.

Bt;t‘wein theknulrgberg 1 and 2 on 10-inch slide rules, it is the usual
practice t0 make 10 subdivisions between the mj ions;
the interval between finest oty oy ation; thus,

graduations .
Section I, Fig, 1.5. vepresents 0.01, as shown in

Between the numbers 2 and 4 it is customary to place 5 subdivisions
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between each minor graduation, In this seetion of the scale, theinterval
between finest graduations represents twice 0.01, or 0.02 (Section II,
Fig. 1.5).

On a 5-inch pocket slide rule, fewer gradustions must be used if the
scale 1s to be readable. On 20-inch slide rules more graduations are
possible than on the more common 10-inch slide rule, with a corresponding
increase in aceuracy. Regardless of the length, the general plan of sub-
division on all logarithmie scales is to place the finest graduation marks
al 1/2, 1/5, 1/10, or 1/20 of the minor interval. Counting of graduatiug
marks in a minor interval at differcnt portions of the seale enables ‘ghe
to find the subdivision interval on slide rules different from those &gwn
here. O

Slide rule settings represented by graduation marks can benade quite
accurately.  Numbers between graduation marks also cam be set or read
closely by observing the numerical value of the finest, mtcrval and esti-
mating the proportionate distance between marks.

Several examples of settmg numbers on the Dhicale are proposed,
described, and illustrated in Figs, 1.6 througb 1.8, These examples
intentionally avoid decimal point dlﬂicultlem ‘$hus focusing attention on
the scale reading. The illustrations alsgy «omit other scales than D and
represent a crude form of WJ%@%W&Y and convenience of
preparation.

It is suggested that the reader aﬂ;empt to make the setting on his slide
rule without reference to the ill {istration and description. After making
the setting a comparison thc description and illustration should
reveal any errors; this pr0(§ure should lead to more rapid correction of
faults in scale reading,.\ _

Examprre 1.6A. Heb 3.12 on D. This setting is approximately half
way along the 1) séale. Onc minor graduation to the right of 3 represents
3.1. The ﬁnest\graduatlon interval represents 0.02 in this portion of the
scale, The séﬁmg for 3.12 is one graduation to the right of 3.10. See
Fig. 1.8.

A—\'“

RN

| )
® ® o o |

JI%I'D!IIII]IIII'I!IIIIII ]IIII‘IIII'II!Il’IJHlIIII l|||:|IIJ T |||||||i||||1|i| T JII1}|IlIJ)i

2??2-{\ [ ..fooj feX/ V—.B‘.J? @@5 49 399?
dfy T @“ﬂ

Fig. 1.8. Scale Setting for Examples 1.6A: 3.12; 1.6B: 2.03; 1.6C: 3.45: 1.6D: 3.905




10 THE BASIC SLIDE RULE PRINCIPLE

Exampib 1.6B. Set 2.03 on D. This setting is approximately one-
third of the way along the D scale. The finest graduation interval -
represents 0.02 in this portion; therefore, 2.02 is one graduation to the
right of 2. The position for 2.03 is estimated midway between 2.02 and
2.04. BSee Fig. 1.6.

ExamrLe 1.6C. Set 3.45 on D. This setiing is approximately
midway along the D seale. The position for 3.45 is estimated midway
between 3.44 and 3.46. See Fig. 1.6.

Examrie 1.6D. Set 3.905 on D. This setting is approximately
three-fifths of the way along the D scale, and is estimated at one“fourth
of the way from 3.9 t0 3.92. See Fig, 1.6. N

Examrrx 1.6E. Set 4.98 on D. This seiting s approxi\iﬁai’ely two-
thirds of the way along the D scale. The finest graduation interval

N N
® @ @ DO'®
||I|||IIEwl|F|]|ilil'[i“yllllllillllw%ll|'. ; 9

495l 005 805 707 7542 825 28
WWW-dblathm{ﬁf}‘f—'kss 4O [?J 75 756 8.2

&
Fig. 1.7. Scale Settihgéfdr Examples 1.6E: 4.08; 1.6F: 8.28; 1.6G: 7.075; 1.6iT:
\ 8.005; 1.611; 7.542

represents 0..05‘i'.(1’ this portion; therefore, 4.95 is one graduation to the left
of 5; the posifion for 4.98 is estimated at three-fifths of the way from 4.95
to 5. Beg'¥ie 1.7.
EX%«‘W B 1.6F. Sct 8.28 on D. This getting is approximately nine-
teethg.of the way along the D seale. The second minor graduation from
) .8\:]:691‘63?111}2:_8.2; the third minor graduation represents 8.3. The finest
graduat}on m.terva] represents 0.05 in this portion; thercfore, 8.25 is the
graduation midway between 8.2 and 8.3; the position for 8.28 is estimated
at three-fifths of the way from 8.25 t0 83. See Fig. 1.7.
Sij}:;u}}:.}f} L.6G. 1 Set 7}.[075 on D.  This setting is approximately five-
8 of the way along the D seale, and is esti i
7.05 and 7.1. See Fig. 1.7. ’ mated at midway between
Exampre 1.6H. Set 6.005 on D. This setting is approximately

three-fourths of the way al . -
¥ along the D scale, and _
of the way from 6 to 6.05. See Fig. 1.7. ’ ts estimated st one-tenth

ExamrLe 161, Set 7.542 on D. This setting is approximately nine- =

tenths of the way along the D scale, and the position of 7.542 is estimated
at four-fifths of the way from 7.5 to 7.55. See Fig. 1.7.
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Exampre 1.6J. Set 1.32 on D. This setting is approximately one-
eighth of the way along the D seale. The third minor graduation from
the left, marked with a small 3, represents 1.3. The finest graduaiion
interval represents 0.01 in this portion; therefore, 1.32 is two graduations
from 1.3. See Fig. 1.8.

e 6 9 ¢ o |

N B R\ :

i12 f2red
fooe L0/ H? {43 137

VK

Fig. 1.8. Scale Settings for Examples 1.6J: 1.32; 1.6K" Q‘Q‘Y LAL: 1.008, 1.6M:
1.675; 1.6N: 1.007 L&

3

Exsmrre 1.6K. Set 1.127 on . This 9qtﬁing is less than one-tenth
of the way along the D scalewW&‘,hglﬁmm%%r@f@,duation from the loft,
marked with a small 1, represents 1.1;%he second finest graduation from
1.1 represents 1.12; the third ﬁnestfgrs;duation from 1.1 represents 1.13;
the position for 1.127 is estima,ted at seven-tenths of the distance between
1.12 and 1.13. See Fig. 1.8,

ExampPLE 1.6L. Set 1. & on D. This setting is very near the left
end of the D scale, and ghe position for 1.008 is estimated at four-fifths
of the distance fromJ@p1.01. See Fig. 1.8.

Examrue 1.6M. 8¢t 1.675 on D.  This setting is approximately one-
fourth of the w a.}ong the I scale, and the position for 1.675 is estimated
at midway between 1.67 and 1.68. See Fig. 1.8,

ExampLEt6N. Set 1.907 on D. This setting is approximately one-
fourth .of fhe way along the D secale, and 1.907 is estimated at seven-
tenthi\of the way from 1.9 to 1.91. Sce Fig, 1.8.

.L.7. Problems in Scale Reading. A set of scale reading problems in
which various numbers are merely set on the C or D scales cannot he
checked for correctness except by having someone familiar with a slide
rule examine each setting.

The pian used for this set of problems enables the reader to check his
own setting or reading against answers in the back of the book. If the
hairline is set to a number on the C scale and the number which appears
on the CI scale under the hairline is read, the reading provides s check
on the correctness.

It will be observed that the “CI” sca.le, standing for C Inverted, is
just like the C scale except for being reversed in direction. That is, the
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1,2, and 3 on the CI scale are at the right-hand end, and increasing to the
left. The graduations on CI are of identically the same nature as those
on the C and D) scales.

Set the hairline to the number in the table on the C scale; read on the
CI scale.

1A iB ic 1D 1E

a* 200 400 110 101 1005

b 192 - 129 263 802 928 -\
c 800 795 606 660 4.1l

d 1015 204 4016 654 230D

130 427 316 940 22
2585 171  3.06 1.36300 2.74
140 294 239 5.10
1.063 420  6.17 8.20 6.71
* Answers for every other row of problems i?: R%ﬁt 1 are provided in the Appendix
¢

3

o en @
]
-1
[a—y

1.8. Manipulation of the Slide Rile: Speed and accuracy with the

slide rule require, among other thitigs, smooth and effortless control of the

www. dideulabcaryinngin  For this pirpose the slide rule must be properls

adjusted. The beginner, bagause he has difficulty in controlling the slide

rule, sometimes coneludeg that it requires adjustment, whercas the pri

meary need may be f orjadditional practice to overcome his awkwardness

This article anc%t@&fllustrat-ions offer advice to the beginner on how t

hold and controhthe slide rule, assuming it is properly adjusted. If, afte:

practice, adjustment still seems to be required, page 192 of the Appendis
should be constlted.

. Accu:nqﬁésetting of the slide can be attained best by having two hand:

in c?,@\a,ct with the slide as shown in Fig, 1.9 or Fig. 1.10. The thumb o;

{

Fig. 1.9. Holding the Skide Rute; Fingers Controlling Motion
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Fig. 1.10. Holding the Slide Rule: Thumb Contrelling Motion , ( N\ )
finger of the left hand working against the motion of the slide bé;ng made
by the other hand provides smooth motion with very liﬁtle muscular
tenseness, "‘.\

Of course it i3 necessary to avoid squeeﬂng the twionbérs of the frame,
on & duplex rule particularly. The squeezing will cshxbe the slide to bind,
and thus make setting the slide more difficult, &

When the slide position is nearly centered ahthe frame, it is more con-
venient to use the forefingers on the slide agishown in Fig. 1.9 rather then
the thumbs as shown in Fig. 3oi4: dbraulibl ary.org.in

Twoshand control of the runner m \the same manner, with one hand
opposed to the other, is often he]pful However, it ig usually satisfactory
to move the runner \uth one hand as shown In Flg 1.11.

e
13 N i N [
[ ) ' N
‘[‘!" 3 i F%\ \\\\ o
O\Y
:\\..
\ ) Fig. 1.11. Moving the Runner

1.9. Infroduction to Division, C and D Scales. Art. 1.3 demonstrates
the principle of logarithms by means of simple examples, and calls atten-
tion to the fact that the logarithmic principle is the basis for performing
division using the C and D seales.

Logariramic Principie For Division: If the logarithm of one
number, M, is subfracted from the logarithm of another, N, the
result s the logarithm of the quotient, Q.

In consequence of this principle, the usual procedure for operating the
C and D scales of the slide rule to perform division is:
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Set the hairline of the runner to the numerator on the D scale

Move the slide to place the denominator on C beneath the
hairline

Read the quotient on D opposite the index (or 1)

See the diagram, Fig. 1.12

Hairfine ™
N AN

Index—, f—Log M —= | ~
Denominator N
‘NI . i @:/ [ T T ll’l\"

A T

O|1 4 ! e \

r—Log Q= \_anﬁéﬁf \—Numg{ﬁfar:
N
P flog A ———] v “\

Fig. 1.12. Division Principle
log ¥ —log M = log Q;\arﬁwM =g

In order to foeus attention on th’e'rhei;hod of operation several examples
wror AEFRASERRE, Mbich intentionallysavoid decimal point difficulties. It is
suggested that the reader attempt to solve these examples using his own
slide rule; thus, the examples will provide additional practice in scale
reading and in manipub{bion, as well as aid in fixing the method of opera-
tion more clearly in{mind. Again, a simplified but workable form of

slide rule is shax’v:n\ﬁt the illustrations.

Log 3 —

15edd

—fn
o
i

\ ‘;"’ ~——Log &—]

fog &6

Fig. 1.13. Division: Partially Graduated Scales
Example 1.94:log 6 — log 3 = log 2; 0r 6,/3 = 2

Exampre 1.9A. Calculate 6/3 using C and D secales.

Solute'on: Set the hairline to 6 on D
Place 3 on C beneath the hairline

Read 2 on D opposite the 1 on the end of the C scale
See Fig. 1,18 for setting
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ExampiLE 1.9B. Calculate 7/4 using C and D scales.

Solulion: Set the hairline to 7 on D
Place 4 on C beneath the hairline
Read 1.75 on D opposite the index

ExsamrLr 1.9C. Calculate 8/5 using C and D scales.

Solution: Set the hairline 0 8 on D
Place & on C beneath the hairline
Read 1.6 on D opposite the index

Exampre 1.9D. Calculate 4.16/3.14 using C and D scales.
Selution: Set the hairline to 4.16 on D R \:\
Place 3.14 on C beneath the hairline O
TRead 1.325 on D opposite the index .

Because the setting of 4.16 and reading the answer regi;\iifé estimating
between graduation marks, the last digit in the answer may be estimated
as 6, or 4, or 7. In most computations, Vanamons o(bhls amount, a frac-
tion of a per cent, are of no importance. \

Examrrr 1.9E. Caleulate 3.59/1.342 u::mg*G and 1} scales.

Soluiion: Set, the hairline to 3480 ulibrdry org.in
%8  Place 1.342 on C beneath thehairiine
Read 2.675 on D opposite_ihe ‘index

The variation in answers in thedast digit obiained by different persons,
or by the same person at dlﬁar&lt times, may be slightly greater in this
example than in Example 10D, because all numbers must be estimated.
However, if the example {siearefully solved all answers should lie between
2.670 and 2.880. A/

ExamrLE 1.9F. /Grleulate 17/7 using C and D scales.  Fig. 1.4 shows
that the dls‘fane@"}m a logarithmic scale from 1 {0 2, 10 to 20, or any two

'.' Log M —
N Left tralex J:I Hairfing—- Right Index |
Deﬂommafon;@ ) \‘
rr———————— Nl -l N : T
it RN N DN
r--—— — o} '\_ \_
Log Q /0 Numerator | —7ead @
here when
Log N indlex /s off
Altersate Scale
log @

Fig. 1.14, Division Principle: Alternate Index
log N —log M =log Q;or N/M =@



16 THE BASIC SLIDE RULE PRINCIPLE

numbers with the same ratio is the same. It is possible, therefore, for
the D seale to represent numbers from 10 to 100, from 0.1 fo 1, or from
1000 to 10,000 provided the decimal point position is determined
separately.

Solution: Set the hairline to 1.7 on D (representing 17)
Place 7 on C beneath the hairline
Read 2.43 on D opposite the index—in this case the index is the
1 at the right-hand end of the C scale

“Fig. 1.14 illustrates the principle of interchanging indices; Figy 1.15
illustrates this example.

7S\ N

Is < Scale

A \\ >
Y Log 17 —= "x/? \-20 / 25&

L og /O Log ,73:‘;’  Answer (2.43)

T

www.dbraul (Frary orgin

Af fwrzafe

Fig. 1.16. Dﬁnswn Alternate Index
Emmple 1.9F: 17/7 = 2.43

1.10. Decimal Pomj:‘L\catlon Tt would be possible to make a slide
rule on which the nitibers complete with decimal point could be set and
read. If one attémpted on such a slide rule to cover the range of num-
bers from 1 $0'4/000,000 with the accuracy of the standard C and D
scales, a shd'e\mle six times as long would be required—that is, 5feet long
as com aréd with 10 inches for the usual C and D seales, Fig. 1.16.
Also, §0r any problem in which one of the given faciors or the answer

werg greater than 1,000,000 or less than 1, a still longer slide rule would
»be _Fequired.

K;ooo YO'OOO Yoo,ooo 1,000,000
AN
1\

N NN
R R

Hy .H}n/:1 H ““\i

1,000,000

&0 in.

Fig. 1.18. Model of Slide Rule to Read Decimal Point Position
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if the decimal peint is determined independently of the slide rule, a
single logarithmic cyele (1 to 10) is sufficient for all problems in division
and multiplication. And although decimal point determination initially
appears to be quite a chore, a systematic method and practice make it
very little tfrouble.

Several methods? for placing the decimal point have been devised. It
is not intended to include all of these methods because to do so might be
more confusing than helpful. Experiments in teaching slide rule opera-
tion by different methods have shown that about one third of the errors
of beginners oceur in misplacing the decimal point.® Also, a considerable/
reduction in the number of errors results if instruction is given in the
“standard number” method. This method and one which may be,g’a'}léd
the “similar simple number scheme” are presented here. « \

The terms ‘“standard number” and “correction number” @s\used in
decimal point placement require definition. A few examplég ol applica-
tion to division problems will make the dcfinitions moréNueaningful.

STaNDARD NUMBER: A “standard number” is defined\ag a number writ-
ten in such manner that the decimal point follows’the first digii of the
qigniﬁcant figures. Examples of numbers w ntten\n the usual form and
in standard form are:

Usual Form Sttﬁa\figrgbﬁ?mb“ry “@orrection No.
5280 5.280 X 1000 ’ 3
327 3.27 X 100 2
a7 2.7 .>§ 10 1
0.0316 3. }\ 0.01 -2
0.0025 X 0.001 —3

For the purpose of placm;3 ’rh<, decimal point in slide rule computation it
is not necessary to write’out each number in standard form. A short-cut
method of merelx counting the number of places the decimal point must
be moved to formida standard number is equally effective and more rapid.

CORRLC’QI,QN WuMBER: The number of places the decimal poini must
be movedis.called the “correction number.” The correction number is
consideréd positive if the deeimal point is moved to the left to form a
standard number; if the decimal point must be moved to the right to form
a standard number the correction number is negative. The reader
familiar with logarithms will observe that the correction number is
merely the characteristic of the logarithm of the number. Correction
number seems o be a less frightening name for the reader unacquainted
with logarithms,

2 For one of the mcthods not described here see Harris, C. 0., Stide Rule Simplified,
pages 52, 70. Chicago: American Technical Bociety, 1943,

3 Bhuster, Carl N., 4 Study of the Problems in Teaching the Stide Rule. New York:
Columbia University Press, 1940,
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gmrLar Smapie Nousmeer Scaems: Rounding off the given numbers to
form mumbers having one digit and zeros, then using cancellation and
mental arithmetic to approximate the answer will determine the decimal
point. position. Even in using the standard number method for placing
the decimal point cancellation and mental arithmetic are necessary.
Examrre 1.10A. Calculate 9265/24. Rounding the numbers:
9265 5000
sS4 = Tgp GPPIOX. = 400 approx. N
The reading from the slide rule is 3.86; hence the answer is 386,
Using the standard number form, and carrying it out cqnl'p’ie}ely:

9265 _ 9.265 X 1000 _ 9.265 ., 1000 _ 9.266\ ;.0
98 ~ 94 X 10~ 24 X0~ &b X
Again ."‘,\\

¢ W

LA
5= 4 approx’.::\\,

. L&
Therefore, the answer is approximatelind,x 100, or 400.

The four steps in applying the shprt]—cilt method to this example are:
www. dbraulibrary.org.in N

1. Write the numerator as & standard number with its correction
number above; write the dedominator as a standard number with its
correction number below,.{

2. Algebraic&ﬂ.y sub?}'a\zt the correction number of the denominator
from the correction’number of the numerator, and write this quantity
above the space fonthe answer.

3 Ment-all?_n gppm}‘{imate the division of the standard numbers, and |
place the dfqlmai point in the answer in accordance with this mental
approximgtion. |

4. Express the standard number answer with its correction number in

t.h('e.glé,ual form by moving the decimal point the number of places indi-
...cgghd by the resultant correetion number.

) 4
4 Using the short-cut method, 9265 becomes a standard number if the,
t}elzcunal point is moved thl_'ee Pplaces to the left; the correetion number is
hen +-3.  For the denominator, 24, the correction number is +3. The

resultant correetion number is:
3—-1=2

The notation of the correction numbers may be easily made as follows:

+3
9265 9965 2

24' - ﬂ“ - 3‘86 = 386
+1
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ExamrLe 1.10B. Calculate 5.71/0.00271. Rounding off:

_8

0.003

Since the slide rule reading is 2.11, the answer is 2110. By the standard
number method:

= 2000

0
571 571 3
o027l — 271~ > it =20
—3 R
since ®
0 (—8) = +3 O
NS ©
Examrne 1.10C, Caleulate 0.241/41.5. By the standard snimber
method: A
-1 €%
—9 \Y
0241 241 B O
q1E S ZiE = 0.581 = 0.00581 \
) N\

1 (D) = 2000
It should be observed that for the simple n;m.ibérs
www.dbraulibeaty org.in
2 _ oy
not 5, and the net correction number of —2 is applied to the 0.581, thus
making the answer 0.00581. , ()
1.11. Division, C and D S¢ales. This article includes some examples
slightly more difficult than{hose in the introductory Art. 1.9, and decimal
point determination i’ fore important element here.
ExaMPLE I.llA.'\:';&ilcula.te 250/495,

Solution: Set th\e\\?iafrline t0 2.50 on D
Mowa, the slide to place 4.95 on C beneath hairline
_Réad 5.05 on D opposite the right index
To place\tﬁe decimal point using the single digit numbers
200
500
Therefore, the answer is 0.505. Or, using standard numbers:

+2 0
250  2.50 _

195 405
49

Although the resultant correction number is zero, since

2—-2=0

= 0.4
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the answer, 5.05, read from the slide rule, is not the correct decimal posi-
tion. The ratio of the standard numbers is less than 1, and the zero
correction number means that the answer must have zero correction to
the decimal point position of

= (.4

L1

Therefore, the answer is 0.505.
Exsamrre 1.11B.  Caleulate 6850,/0.0842.

Solution: Set the hairline to 6.85 on D Q)
Place 8.42 onn C bencath the hairline A
Read 8.14 on D opposite the right index <\

For plaecing the decimal point:

6350 7000 7000 <o

A

Therefore, the answer is 81,400. N
For purposes of placing the decimal poihfit is not necessary that the
one digit of the given numbers be used\¥he mental arithmetic is some-

times s_impl_iﬁed by rounding the nurhbérs as in this example.
v AR BEREY OTEEN  Caleulate 0.0004215/34,200.
Solution: Set the hairline to 4.‘2’15' on D
" Place 3.42 on C/béueath the hairline
Read 1.232 ngb opposite the right index of C

L™
The standard numbé* method of placing the decimal point is

) 6{}62121 P 8

0 5 4215 T

:'\.}\'\ 50300 = 549 = 1232 = 0.00000001232
‘,§~ +4

’Ijl}ej }isefulness of the standard number method is more evident in an
...Q?;ﬁfeme example of this nature. Probably the precision of the given
\Jjiumbers does not justify estimating the final digit, 2.

The following additional division examples omit the statement of slide

ritle manipulations, but show the manner of placing the decimal point.
Examenr 111D, Caleulate 7.07,/2600.

Solution;
0
707 707 3
5606 = 3500 = 72 = 0.00272
+3
0—(+3) = -3

ExampeLe 1.11E.

Caleulate 582/3 on: Since € i
the answer is slightly /3.40.  Solution: Since 600/3 is 200,

less than 200, or is 171.
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+2
82 582 Ly
340 340 T

0

Lxampne 11T, Caleulate 1705/375. Selution: Since 1700/400 is
slightly greater than 4, the answer is 4.55.

Although the foregoing examples refer to the C and D scalcs, any pair
of mating logarithmie scales, one on the slide and one on the frame, may
he used in the same manner for performing division. Thus, the A and By
or CF and DF scales of Fig. A.3., page 184, could be used for any of these
examples and for the problems which follow. If CF and DF scales\ate
used it should be noted that the index (or 1) is near the middlé.of the
scale, not at the end as on C. N

1.12. Numerical Problems in Division. For practical groblems and
examples on division applied to various fields of work, séé:}’art 1L

Additional numerical problems are given at the end of Chapter 1,
including some in which only the decimal point is'tt?:be determined.

Perform the caleulations indicated below. v

0 g g
4 25 13 & 174 11

p 29 8.14 1816 536 715
2.08 90 1076 2010 8323

c 210 8760 &\ -0.7854 30.1 102
574 365N, 6 747 427

4 232 W9 797 0.28 5225
1595 ~0D137 3085 0.0136  16.5

o 0263507233 1.45 268 0.387
0.00081" 1027 0.01905  0.428 301

¢ Logb" 26.90 394 0554 308

3135 0.577 0.0321 557 0.00275

NV3u 0.0598  0.466 28.2 1.89

€ 91115 02425 1524 507 0.0393

p 2325 12255 257.5 0.464 0.0764
67.25 1575 0.33 354 2.81

; 8725 109.6 4680 60.8 0.2115
1.663 0.1785 543 0.0662  0.001127

. 23.21 467.2 900.5 8295 0.737

1 1025 8145 1247 26.4 0.00080

g 305 0.517 4085 0.073 1515
2.15 72.2 24.05 320 3.95

g 2730 277 529 7380 0.920

1507 206 0.083 4350 516
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1.13. Multiplication of Two Numbers, C and D Scalf.s. The t{a?,is f
performing multiplication using the C and D scales is the addl_tlon ‘
lengths proportional to the logarithms of the numbers, as described
Art. 1.3. o

Logarithmic principle for multiplication :

If the logarithm of the first factor, M, is added to the logarithm of
the second factor, N, the sum is equal to the logarithm of the product,

P, A
Harr A’:ﬂé’ \
. \‘ N " 4 :\
lredex ™ |..— Log A ~] o\
' Second Factor
°y! 1 I( ”;" 1) Il

) I T T T T III lll €79
o h @ =) 1 (¢

—— Log M —-[ \ \_Pr;:dcch
First Faclor ) x’\\'

Log P

Fig. 1.17. Mu}tii:ﬁcation Principle
. i A ='log P; N=pP
www.dbraulibrary.org.in log M + 1°g;Nt“ og Pior M X

Consequently, the usua.l‘.niét'hod, but not the only one, for operating
the C and D scales of thewslide rule to perform multiplication is:

Set the index of z(}}o the first factor on D
Place the hairline over the gecond factor on C
Read the ptoduct on D beneath the hairline

EXAMPLF:%:\I:?;A. Caleulate 5.5 % 1.5,

Solutign=Set the left index of C to 5.5 on D
O\ Move the hairline to 1.5 on C

o Read 825 on D beneath the hairline
See Fig. 1.18 for setting

'S

a\"
\
\/

log 15 ——

i

___’—-;_‘___“‘——*——

[

i

m| MR

6 Al

i
Log 5.5 o \Sca/ej
log 8.26 —— __ __|

Fig. 1.18, Multiplication
Example L13A:5.58 X 1.5 = 8.25
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The sequence of terms in multiplication is immaterial. The 1.5 eould
be set on D and the 5.5 on C. There is a slight advantage in this latter
sequence because the slide does not project out of the frame as far as in
Fig. 1.18. The importance of this is eonsidered in Art. 1.16, on con-
tinued division ard multiplication.

ExampiE 1.13B. Caleulate 5.5 X 2. The first factor, 5.5, is one of
the factors in the preceding example. However, in Fig. 1.18 the 2 on C
is observed to be heyond the end of the I scale gradnations. Because
of the cyelic nature of the logarithmic scales, a change in setting toise
the right index of C will hring the answer on scale, \

Selution: Set the right index of C to 5.5 on D O '
Move the hairiine to 2 on C

Read 1.1 (representing 11) on D beneath the baii-]i;e
&

Exampre 1.13C. Caleulate 5.5 times each of théfuantities 2.5, 3,
3.5,4. Asnoted in Example 1,124, either factor imya produet can be set
on the D scale. However, when one numberds to be multiplied by
several others it is better if the index of C igseb to the common factor on
D. Moving the runner to the several quantities on C can be done faster

than re-setting the slide seve‘rMa\E ﬁ%ﬁnbisa'ﬁljbi-ary.ol'g.in

Selution: Set the right index of ¢ t035.5 on D
Move the haitline suceessively t0 2.5,3, 3.5, and 4 on D
Read on D after plating the decimal point respectively 13.75,
16.5, 19.25, am\}{?g

For these first examples of multiplieation, the decimal point position
has been veadily appsrent. As in division, the similar simple number
1 scheme or the stadi@itd number method may be used to place the decimal
point. It should be remembered that in multiplication the correction
numbers of tﬁ[gﬂactors arce added algebraically, just as the lengths on the
logarit-hm'{é Seales are added.

The™ steps in applying the short-cut standard number method to
multiplication are:

1. Write each factor as a standard number with the eorrection number
above it.

2. Algebraically add the correction numbers of the factors and place
this resultant correction number above the space for the answer.

3. Mentally approximate the product of the one-digit numbers and
place the decimal point in the answer read from the slide rule in accord-
ance with this mental approximation.

4. Express the standard number answer with its correction namber in
the usual form by moving the decimal point the number of places indi-
eated by the resultant eorrection number.
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Exawrrz 113D, Calenlate 0.021 X 3200,

Soluiton: Set the left index of Ct0 2.1ion D
Move the hairline to 3.2 on C
Read 6.72 on I} beneath the hairline

Applying the standard number method for placing the decimal point:

-2 43 +1
0.02] X 3200 = 2.1 X 3.2 = 6.72 = 67.2

The resultant correction number is N
~24+3 = +1 A
and the mental approximation for the one-digit stangiﬁlr'ci.numbers is
ex3-6 0
Therefore, the answer is 67.2. N4
Exawern 1.13E.  Calculate 810 X 0.8350

Solution: Set the right index of C to 840 D
Move the hairline fo 8.3 o
Read 6.72 on D beneatlitthe hairline

www.dbraulibrary org.in . A
or plading the decimal peint:

42 -1 +1
810 X\B.83 = 8.1 X 8.3 = 67.2 = 672

\ \".
The mental &pprgx\m’latmn for the one-digit numbers is
y R4 . 8 X8=¢64
not 6, as iisin the preceding cxample.
AlthQu—gh the resultant correction numbers are the same and the digits
of ‘Ehga}nsx‘ver as read on the slide rule are the same in these two examples,
theldtter is 10 times as much as the former, The mental arithmetic with!

N :hé b} ; 1z . . . ;
C {r tandard numbers is scen as g hecessary step in placing the decimal
!

point correctly.

The stat{da,rtl n}nnber method is illystrated in this exanple for puI‘DOSBS!
of comparison v}flth the preceding one. However, the similar simple
number scheme 1 probably more satisfactory in this case, giving

800 X 0.8 = 640

Examrrn L13F.  Caleulate 0.000562 X 172,
?Ex.ample L.13E, in which both numbers are near the right end of the scal
It Is easy to recognize that the tight-hand index of C must be used &
;113%. the answer on the scale. In the present example, trial is the only:

In a problem such asé
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In the diseussion of Example 1.13A it is suggested that the best sequence
pf faetors is onc which will require the slide to project from the frame the
jeast. Therefore, in this example if one attempts to use the right-hand
index of C, it should be set to the factor 5.62; if the left-hand index is
fried 1t should he set to 1.72, Since it is the left index which must he
ised, the solution is:

Het the left index of Cto 1.72 on ID
Move the hairline to 5.62 on C
Read 9.66 on I) beneath the hairline

IFor placing the decimal point N\

-4 42 -2 .
0.000562 X 172 = 5.62 X 1.72 = 9.66 = 0.0966\{'

A

{n performing the mental arithmetie, the one-digit nuribers’

5X1=5 7\

W

pill give correct decimal point location. As apgiher plan rounding off
[0 the nearest one-digit numbers would give | ™
ﬁw@.d:bl'l'ﬁ‘ﬁzb}‘éry_org_in

Rince this plan of rounding off increafes both factors above the given
values, 6 X 2 is obviously greaterthan 5.62 X 1.72, and the correct
value is less than 12, and thereftﬁ‘e‘ the decimal point belongs after the 9.
Howevor, a plan which gives‘a\s oser cheek on errors 1¥ to round off one

actor in a product to thedlext larger one-digit number and to use the
next smaller one-digit nuteher for the other factor. Thus,

\& 5X 2 =10

ives a closer appaf&imation of 9.66 than the other one-digit combinations
Suggested. 08"

. The fo]%f):@ng additional multiplication examples omit the statement
f slide rule’ manipulations, but show the manner of determining the
lecimal point position.

f Exavrir 1.13G.  Caleulate 0.0731 X 6300, Rounding the numbers:

0.07 X 7000 = 490

fherefore, the answer is 475. Or, using @ standard number notation:

—2 +3 +1
(0.0731 X 6500 = 7.31 X 6.50 = 47.5 = 475

Exampry 1.13T1.  Calculate 1590 X 185. Rounding the numbers:
1500 X 200 = 300,000
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Therefore, the answer is 204,000. Using the standard number form:

+3 42 435
1590 X 185 = 1.50 X 1.85 = 2.94 = 204,000

1.14. Rumerical Problems in Multiplication. For practical problem
and examples in multiplication applied to various fields of work, se
Part TI.

Additional numerical problems are given at the end of Chapter 1
including some in which ouly the decimal point is to be determiined.

¢\

1K iL O N

a 1.01 X 5.05 1.24 X 7.5 1.07 X 5.8, 1.005 X 36.5

b 1.23 X 83 1.3 X 57 0.25 X 20007 8.1 X 248

¢ 438 X 2.08 0000812 X 7700 0.02¢ X1%  1.005 X 0.0762

d 182 X 44.3 927 X 0307 47.50.0113 3850 X 265
(N K

00236 X 4.13 847 X365 1875 x 403 2075 x 0.0037,

f 19 X 27 502 X155 AN262 X 115 37.9 X 552

g 62 X 4.35 031 X 87.2 \ ™ 0.41 X 0.082 655 X 0.0061

h 1925 X 0.134 573 X 0.0182' 222 X 615 083 x 75,5

www.dbraulibrary org.in

i 7.07 X 143 1.9 X655 522 X 408 16.7 X 27.8
§0.0557 X 211 6030\X 324 888 X 192 23.4 X 56.7
k 30.6 X 0.19 246" 188 455 X 630 75 X 368
1 0.474 X 16.4 \'\és.l_ X 147 0.00136 X 714 92 X 0.0863
m 0.0809 X 0.050) 0.0041 X 0.378 848 X 752 606 X 166
n 19.85 X 0455/ 837 x 375 0.0346 X 0.029 98.2 X 329
0 5280 X AL} 1035 X 90.9 262 % 1152 3030 X 0.0017]"
P 0.0002377 0.029 17.28 X 1440  £2.1 x 623 46.0 X 416
q 137,1}\)< 2860 407 X 2.16 64.2 X 118 0.027 X 1930
1275 X 0.182 727 X 77.2 123 X 0.1837 5470 x 486
(30084 X 0.091 0428 X 0.0262 524 X 472 1760 X 212
t 7.15 X 18.6 678 X 000226 0386 x 616 1072 x 5.95

1.18. Meaning of Accuracy; Increasing the Accuracy of Computation,
Many practical tomputation problems; including the representative
group presented in Part 11, involve numerieal operations about physical
things or physical properties. It is characteristic of all mesasurement
_(exr:ept- counting s number of ohjects) that approximation ig necessary
In the process. This is trye whether the measurement, is length angle :
volume., weight, time interval, electrical Droperties, or other phenyomena.’

The instruments of measurement are similar to the slide rule in that -

they possess & graduated scale. The graduated scale often is not loga- .
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rithmie, but it is graphie, whether on a protractor, scale, clock, or
voltmeter.

1t is obvious thati caleulations made with approximate data are them-
selves approximations. The degree of approximation is occasionally a
matter of some concern. Thervefore some deflnitions on accuracy of
measurement and of ealculations with measured dats require more careful
consideration.,

Several terms used to deseribe aceuracy of numerical quantities are:
significant figures, per cent error, and probable error.  As an example, if 1
the diumeter of the earth is known to be greator than 7.5 thousand mlies
and less than 8.5 thousand miles, the value, correct to one mgmﬁcant
figure, is 8 thousand miles. If it is known as lying between 78.5 hundred
and 79.5 hundred miles, it may be said that the diameter, corfect to two
significant figures, is 79 hundred miles. If this example 1s‘ce'n'rled to one
more significant figure, it is necessary to restrict the defittition of diame-
ter, since the earth is not a geomectric sphere. The equatorial diamcter
is 793 X 10 miles, meaning that the value is nearer £ 7930 than to 7920
or 7940. The per cent errors corresponding to bhese EXpressions are:

0.5 X 100 or Ie.ss X 100 or less, and ¥ 100 or less

8 ’ 79 WWW dbrauhbl.ary dlgélq
These reduce to 6 per cent, 0.63 per 4,0nt and 0.0630 per cent. Thesc
percentages are expressed with one, two, and three significant figures,
respectively, corresponding to th number of significant figures in the
several diameters, \\ '

From statistical studies(ihis known that the error of measuring the
equatorial diameter is pr&bably lcss than 330 feet, or 0.062 miles and the
most probable valuc/ig7926.69 miles, although it cannot be known with
certainty that the(difimeter is not several hundred feet, or perhaps a
thousand feet lafger or smaller. Most likely it is less than 330 feet away
from the pro\hable value. This amount ig called the probable error of
measurement/of equatorial diameter.

The aceuracy of the C and D scales of the slide rule may be considered
in a similar manner. If an error of one graduation interval is made in
reading the scale so that 1.01 is read for a calculation in which the exaet
value is 1,00, the result is correct to two significant figures (the third digit
being in doubt), and the error is 1.0 per cent. If 1.99 is read in place of
2.00, the result is again correct to two significant figures, but the error is
only 1 in 200, or 0.5 per cent. At numbers just greater than 4 on the
10-inch C and D scales an error of one graduation interval is 1.2 per cent.
For any other portion of the seales, an error of one graduation interval
lies between 0.50 and 1.2 per cent.

In reading the slide rule, an error of one graduation interval is large; it
is possible to estimate proportional distances between graduations quite
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accurately. It has been found from many computations that the proba-
ble error of reading the C and D scales of a 10-inch slide rule is about
one-twentieth of one per cent. The probable error of computation
increases with the number of factors in the problem and the number of
readings and settings on the scales. ' .

The accuracy of the given data and the use to be made of the auswer
determine whether a slide rule is sufficiently accurate. If the numerical
data for a problem are correct to three significant figures, any computa-
tions made with the data will not be correct to more than threeg; gnificanl
figures. For many of the applications of Part II, the methéds for obtain-
ing the data, and consequently the duta, are correct to ngyrore than three
significant figures. Even when datu are correct 10, more than three
significant figures, the purpose of the cnmputatioqsmay make a slide rule
entirely satisfactory. S

Although accuracy of dats and accuracy\of computations are not
elements of the simple numerical problems)of Part I, it is helpful to
examine the nature of slide myle accumq{along with the study of division
and multiplication. Also, it is desi rableto consider & method for securing
results more accurate than can be vead directly from the slide rile.

By splitting a factor into twoparsometimes th rec, parts, and perform-

WA P T R B ea) opgmﬁrbn with slide rule and part of it mentally

or with pencil and paper, it Is possible to obtain one more significant
figure in multiplication et Qivision with very little additional labor. The
following numarical €xdmples illustrate more clearly than words the :
method for doing this and at the same time show how to keep the mental
arithmetic simpleY)

Examrie 15A.

6770 _ 5900 + 870 5900 870 .
(3900 = " Hoog = 5000 . + 5900; = 1401475
The :%u})script, m, identifies the operation done by mental arithmetie; s
idéntifies the slide rule operation,
N\ TFxaurLe 1,158,

16,875 _ 14,260 + 2615 14260 2615
1426 = 14.26 = 1276, T 4.2, = 1000 -+ 1835
Exameir 1.15C,

5280 _ 5000 -+ 280 5000 . 280
125~ 125 T 135, T iog, = 40+ 2.240

The number 5000 is selected for one part because 5000,125 is simple

integer, and may in this example be computed with the slide rule
ExameLr 1.15D. .

Q09207 _ (0.00005 X 1625) 4 ? _ 0.08125 + 0.01082
1625 1625 N 1625




30 THE BASIC SLIDE RULE PRINCIPLE

Derominator Quantity —————— |

-
Second Newmerstor Factor —

Quoticrt on 17
First Stee

FPartial Answer
Alternate Quotiernt
Lirst Nemerotor | First Sigp
Querntity
Fig. 1.19. Continned Division and Mﬂﬁplicatiops\
2\
Fxample 1.16A; 30 X 6/9 = 20; or log 30 — log9 + logf\=+og 20

Examrre 1.18B. Calculate 75 X 18/13. N

N

Solution: Sct the hairline to 7.5 on I R
Set 1.3 on C beneath the hairline

The result of this division appears on p*ﬁﬁposite the index of C, 'fl‘(
multiply by 18, the hairline might bg.ﬁ}difed to 1.8 on C; however, Fig
1.20 shows 1.8 to be beyond the end €V, Tt is shown in Example 1.13F

-‘—‘_J\'l———-—__ Answer AN —
. .y SecondNurmerator Dewntity
www.dpraulibrary.org.in A AFersoie |
Levormungtor
Adfernate

—— )

) Alternagte
: Answenr
# Sten o Lo
AN\ st Numeraior Quan.r‘r'fg
LR Gddn ity

N

G

Fig. 1.20. Continued Division and Multi

ample 1.16B: 75 X 18/13 = 104 0
75/13, while reversin

plication : Reversal of Indices

peration: Place hairline to partial answer,
£ indices to multiply by 18

that when oue factor
other index of (3 will
used to hold 5 partial

ing steps are:

in a product appears off the sealo, changing to the-
bring the product opn scale. The hairline may be
answer while changing indieeg, Thus, the syceeed- _

Move the hairline to the left index of ¢
Set the right index of C beneath the hairline
Move the hairline to 1.8 on (]

Read 1.04 (to three significant figures) on D beneath the hairline
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To place the decimal point it may be noted that 18/13 is approximately
one and one-third; and 75 times one and one-third is 100. Therefore, the
answer is 104,

Folded seales, described in Art. 1.20, may be usced to avoid the need for
reversing indices in problems like this, thus eliminating one setting of the
slide,

ExampiE 1.16C. Calculate 13.75 X 468

0.00216
Example 1.16A in slide rule setting. The reader may verify that the
significant figures of the answer are 2.98. Placing the decimal poing 48N
more difficult than for the preceding example, and this is a good exa.mgle
on which to use the standard number method. A0

As an obvious extension of the method deseribed in Art. 10, the
resultant correction number for continued division and wdltiplication
equals the algebraic sum of numerator correction nung@fs’ minus the
algebraic sum of denominator correction numbers. TFhus

This example is similar to

1 4200
13.75 X 468 _ 1.375 X 408"
0.00216 216\

www . dbrauli bl'ary&il'g. in

*

ﬂ.nd & ::‘
(+1+2) = (=3) = +6

for the one-digit numbers \‘

N
N7 +8

Therefare, the a,hé;v\’er is 2.98, or 2,980,000. As noted in Art, 1.10, this is
merely a shortchand way for writing

3

[}

=25

- [ ]

AN
TN375 X 10" X 4.68 X 10* _ 1.375 X 4.68 5 107 x 102
N 2.16 X 103 - 2.16 102

e 42,5 X 871
Examrery 1161, Calculate 000124

reversal of the slide to use the alternate index of C for the final multiplica-
tion. The significant figures of the answer are again 2.98. To place the
decimal point

This example requires a

+1 42
42.6 X 871  4.25 X 8.71

0.00124" 1%
-3
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and
(+1+2) — (-8) = 46
For the one-digit numbers
£ X8
- = 32
1
+6 .
Therefore, the answer ig 29.8, 0r 29,800,000, A comparison with Exampl
1.16C shows that the resultant correction number is the same, and th
digits of the answer are the same. However, the decimal point positior
for the one-digit numbers ig different, and thug the answgy'@ 10 times &
large for Example 1.16D as for 118 N\

0.526 X 746 « M ) .
Exsmrie 1.16E, Caleulate 2‘537%%13 If:(dl}}flSlOIl by 29.2 i

It makes no difference in this prqblélﬁ whether 0.526,/9.15 or 745/9.15
is performed first, However, ag «& general procedure, if 746,/0.15 is per-

wwx‘{gﬁpﬁﬂiﬁmly@eggmater port-%oii “of thg C scale will be within the frame
and in position for subsequeént mult;

Solution: Divide 7.46 bi9.15
Multiply the-result by 5.26
Dividesthis result by 2,92
Rea-d;'l',ét;f on D opposite the loft index of ¢

If the terma{a,r'e rearranged in the order of the operations
A&

§ 7.46 5.26
Q& 9.15 2.02

Qr,yv;ri'it-ing the procedure as logarithmie equation

Vo g, — log 9.15, +- log 5.26, — log 2.92, = log 147,
The subscripts, 1) and C, indicate the seales on
set.  The decimal point may be placed by obser

ving that
0.5 X800 400
30 X9 T 275
is a little greater than 1. O, using the standard number method

—1 +2
0526 X 746 594 X 746

202 X815 T 393 % b1E
+1 g

which the numbers gre -

T RS T o L
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and
(=142) —(+14+0) =0
The one-digit numbers give

5XT 35
3x9 27

1+

Therefore, the answer is 1.47.

. 90¢ 51! .0032:
Exaurie 1L16F. (Caleulate 209 X 0.515 X 0 00324-

245 X L.782
example in which reversal of indices is necessary if 909,245 i perfopmed
first.  Any other division sequence may be used and reversal of, in&i’ees
will be avoided. The recommended sequence, which keeps ¢he' slide

This is also aps,

most nearly centered iu the frame, is A\ 3
+2 -3 —1 (¢
9.09 3.24 5.15 4
7.82 2.45 N
—1 2 <
B
The resultant correction number is AWV

www.dbraulibrars wél'g.in

(+F2 -3 -1 — (—1.:—I—:32 = —3

The one-digit numbers reduce to AN

9X3 X5 9X15
X2 AN I6
—3x\
Therefore, the answer is 743, or 0.00791.

It is not necessary towéaite the numbers in the sequence in which they
are set on the slide ruleyas has been done here. Tt is desirable in a leng
serics of calculatk{lﬁi\ﬁb place a check mark near each quantity as it is set
on the slide rule{\"I'his is a protection against duplication of some term,
particularly i£%he sequence of setling is different from the given scquence.

ExampeafJ.16G. - Caloulate 0.0142 X 792 X 16.5. Tt s possible to
multip!y\th;ree quantities with one setting of the slide by using the CT
scale along with C and D. 'The method is deseribed in Art. 1.18. Not
all slide rules have a CI seale, and in any case, mastery of C and 1) gcales
is desitable before taking up other scales. The solution presented here
used C and D scales ouly. :

Solution: The sequence of operstions is immaterial. However, multi-
Plication of 7.92 by 1.42 keeps the slide more nearly centered in the frame;
then the result of this product ig the first faetor in a product with 1.65.
The stops in the opcration are:

Set the right index of C t0 7.92 on D
Move the hairline to 1.42 on C

=9—
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Set the left index of C to the hairline
Move the hairline to 1.65 on C
Read 1.855 on D) beneath the hairline

For placing the decimal point

—2 +2  +1
0.0142 X 792 % 16.5 = 142 X 7.92 x 1.65

The resultant correction number is £\

—24+241 =41 O\
and for the one-digit numbers X O’

Ix8x2=16 )

+1 V

Therefore, the answer is 18.55, or 185.5. O
8650,77y"

Examrrr 1.16H. Calculate 375 X2 “2 Solution: There ig one less

Dumerator quantity than denomindtor quantity. Again, by using the

CI scale with C and D the mininmel motion of the slide results, Using

the Cand D scales only, it ig 8.200d plan to factor out a 1 and perform the
S ddmenkid G i i n shom‘diagrammatically

D1 5650
(VCT B3 275

. . _ A\
The significant ﬁguﬁs of the answer are 9.96. To place the decimay] point
similar simple humbers show '

OO e eo0p
A& 20 X 300 ~ 6000 =
Thergf'd%,wthe answer is (1,926,

™ 1
) ;E;HEAMPLE 1.16I. Calculate WX 5 The slide remaing more

4 \‘ N/ . . - .
\learly centered in the frame if 1/5.22 is performed first select; ng the 1 at
the right end of D, The suggested solution is:

Set 5.22 on (! to the right index of D
Move the hairline to the left index of
Place 3.88 on (v beneath the hairline
Read 4.94 on D at the right index of C

To place the decimal point
1y —4
+2 +2
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gince the resultant correction number is

0—(+2+2) = ~
and for the one-digit numbers
1 1
INE =5 = 0.05
A . . . 25 68
¥xampLE 1.16J. Determine U7 in the proportion: 33 = T One
method is to solve for U, abtaining .
. 3.2X68 R\,
V= —5%— O

However, in the given form it may be observed that the ra’mo, 2.5/3.2,
equals the ratio, 6.8/, or in logarithmie form ~\V

log 2.5, — log 3.2 = log 6.8, — log U -

The subscripts, D and C, indicate the scales (m\gwﬁch the numbers are
set. In other words, the solution is: A\

Bet 3.2 0n Cto 2.5 on waw dblauh{aral‘y org.in

At 6.8 on D read U equals 8.7 on, C

-

This method is especially useful if “there is a continued proportion,
such as

S

+$ 3
25068 _V 15
3:"?‘? 44 Y

Fig. 1.21 illustrates t-hé}[sﬁnciple of solution for a continued proportion.
The numeratar (lg{’éimi'ties are then all on the D scale, matched with

N

~Log S l_ﬁ

'Gii ©T'@ l@lf?lxll!lll
¢ ©&"]

r~log @5
Log Rg

Fig. 1.21. Proportion

log @n = log B — log 8c = log Tp —log Ug
=log Vp —log W¢ = log Xp — log ¥o

f;;ll‘l‘eﬁponding denominator quantities o C. V may be read as 3.44, and
is19.2, .
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It would be equally satisfactory, and sometimes desirable, to inver
and set all numerator terms on the C seale with the eorresponding denom;
nator terms on the D scale.

1.17. Numerical Problems in Continued Division and Multiplication
For practical problems sand examples applied to various fields or work, se
Puart 1T,

Additional numerical problems are given at the end of Chapter 1
including some in which only the decimal point is to be determined.

Caleulate the following. N\
1P 1Q (O1r
o 135X 2375 104 X 932 X 57.6 635X 43.5
10.3 X 0.0356 X 67.3 1853 X 0.0855 = {921
b 938 X 456 364 X 1.05 X 793 ,“D1530 X 9080
1355 X 0.0242 X 17.35 L95 X 809 N\ 16,800
o 624 X 1285 0.132 X 0.045 X352 1

41.75 X 3.75 % 955
0.585 X 0.0734

0.00248 X 10.76 X 0.153

0.576 %435 39
33X UK 1436 |
5195°%73480 567

0.0325 X 0.00959 X 0.165 9.48°X 2.16 X 53.2 7.1 x 393

wiw - dbraulibraiggoggn” o 1058 2150
485 X 0284 | M0.532 X 373 X 778 1
136.5 X 0.00473 X 16,82 12580 7 0335
10,080 X 92.5 X, 0.0375 182 X 456 X 932 0.265 x 0.632
186.5 1652 00842
p 200184 X 1362 % 254 1635 X216 X 104 93 x 42 % 67
'8\'135\' 10,400 X 545 103 x 0.912
; 0.73 g"g};mpg X 0742 6 X 35X 1570 5070 x 1530
OV 0.0648 _ 916 X 425 41,800
y gg,,mo X 350 X 0.725 13846 X 2080 3190 x 0.0375
J 33,000 X 957 54.5 X 7.8% X 238 0.2725
1.97 X 2.06 X 0.0107 4275 X 1.755 0.905 X 0.0035
0.0034 X< 9.63 31,600 T 0.0i720
4.53 X 10.75 X 0.83 1 5 5
1 10.75 1 653 X 345
0.312 X 104 0.00734 70,500
35 X 1.325 X 0.515 1
m 1 3175
10.3 X 0.872 7385 .572?0234
a 214 X122 x 236 0.912 X 0.0464 |
8.45 X 6.36 0.0786 19,750

0 71,500 X 0.00435 X 135

LE75 X 249 % 899, 5 5 5.05 -
P 7800 X 0.00535 % 805 5 358 X 1.655 X 5.05

1090 X 53,800 % 7350 43 X 976 X 0.053
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1.18. The Inverted Scale. The CI, or C Inverted, scale found on
many slide rules is a logarithmie scale increasing in the opposite direction
from the C and D scales; or, it is a negative logarithmie scale. Some slide
rules have been made with an inverted B scale. Of eourse inversion of
any one of the usual scales is possible. The negative logarithm property
of the CI scale makes it useful for several purposes, one being to find
reciprocals of numbers.

If the hairline is set to a number on the C scale, the reciprocal
(except for decimal point) may be read on the CI scale.,

Log C/

[~ =
V4

Fm—— X :Log o ——]

Log /O
Fig. 1.22, The CI Scale Princ@e.\

v/

In terms of logarithmie equations and the gae};éral diagram, Fig. 1.22, it
is evident that www,dbraulébfgry.org.in :

or
On 10
O
Tgnoring the decimal peind’
AS
O 1
O C==
"\:\ C :
On the prepéﬁlﬁg pages, settings and readings on the slide rule are
referred to 4§ standard number, since one cycle only (1 to 10) of the
logarithmie.&cale represents all numbers. Thus, the slide rule setting for
the nunibers 185, 18.5, or (.0185 has been referred to as 1.85. On this
and subsequent pages this distinetion is dropped for most discussions.
Reference to a setting of 18.5 or 0.0185 is understood to mean 1.85 on the
one cycle logarithmic scale,
Examrre 1.18A. Find reciprocals for (a) 15, (b) 21, (¢) 2.44, (d)
0.0362, (e) 37.6, (f) 0.49, (g) 5.79, (h) 68.9, {i) 833, () 0.952.

Solution: Set the hairline suceessively to 15, 21, ete. on (¢
Read on CI beneath the hairline; (a) 0.0667, (b) 0.0476, (c)
0.410, (d) 27.6, (e) 0.0266, (f) 2.04, (g) 0.1727, (h) 0.0145,
{1) 0.00120, () 1.05
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Fig. 1.23 illustrates a few of these examples. Referring to Figs. A.1
through A.8, pages 182-189, it will be observed that the CI scales may be
at the edge of the slide or away from the edge. Fig. 1.23 shows it away
from the edge, and omits other scales not used.

Qo667 ~O0476 D410
L R A R L L G U O U R B e a1 e SO TR
a1 g T 6 - 4
2 »
¢ |l||u!mgrmllu|||z|||||n||ﬁ|u[uunmfml5||||funﬁm|n| !Tg i [’ el L e e gl il
5 2 P 2
KO\

Fig. 1.28. . Reciprocals on C and CI Scales £\
Example 1.18A: 1/15 = 0.0667; 1/21 = 0.0476; 1,/2.44.2 0.410
N

One may, with equal ease, set on the CI scalemﬁg.lﬂ' read the reciprocals
on the C geale. G
Some duplex slide rules do not have the Guand €I scales on the same
side. Since the D scale is just like the (/3cale except for being on the
frame, it is possible to find l'eciprocals,b}‘ aligning the CI scale with the
D) scale and then use them in the sati@manner as the C and C7 seales in
Example 1.18A. R\
www d kit inannorg@F and CIEseales, D and DI scales, or any other pair
of matching direct and inverted logarithmic scales may be used to find
reciprocals. The necessary condition is that the indices on the direst
scale match those on th&inverted scale. Consequently, it is also possible
to read reciprocals¢by using, on a slide rule having such scales, CF with
DI, D with CIT, by ‘merely matching indices.
Ifone has a gl'i'de rule which does not include & CT scale, the equivalent
of a CT scale iy be obtained by withdrawing the slide and ingerting it
reversed .. Reciprocals can be read using D with the reversed C scale,

Fig. l%ﬁ

o O Scale freried
T

Fig. 1.24. Reversed C Scale for CI: Partially Graduated Scale

Because the inverted seale is in effect a negative logarithmie scale, it

may be manipulated in s manner ¢ommo
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The procedure for operating CI and D scales to perform multiplication

is:

Set the hairline to the first factor, M, on D

Move the slide to place the second factor, N, on CI beneath the

hairline
Read the product, P, on D opposite the index
See the diagram, Fig, 1.25 :
Left fndex —

f-._é ag N+ };—R{qﬁf /ndex—’

Secand r%cfor\@ ”f 2 \:\
1

1 Ly N\

GIJ-
/ﬁ- A BT
Lo M—-J \ o
Alfernate v \ "E(Q
Factor )

First

Answer

Log A+ Log V= :ﬁogP—-x—.\\f
Fig. 1.26. Multiplication Principle: CI qnax\ﬁ’Scales
log M +log N = log P; or MbéuV =F

Exsmrie 1.18B. Calcula.tewl\ﬁ[_>d<b§a&?§}él_g;_lop§1_q]nD scales,
Solution: Set the hairline to 1.3 on D
Place 8 on CI heneath the hairline
Read 104 on D OppO%Lﬁ’& the index of CI
See Fig. 1.26 \\

’ : —
Second ch«;:)e(y-j Log & A L
. <
GRS
Log(13xB) 104 N
A/ferr?\az‘sf Log fO0 /\I
Log £.3 —=] First Factor

Fig. 1.26. Multiplication: CI and D Scales
{Example 1:18B; 1.3 X 8 = 10.4)

Any pair of logarithmic scales which may be used for performing
multiplieation may also be used for division by ehanging the method of
operation. Thus, division may also be performed using CI and D scales.
For performing single division, the method has no superiority over the
use of C and D seales.  For a series of divisions with the same numerator,
one of the common factor problems of Art. 1.19, the method is very
useful,
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The proceduré for operation of CI and D scales to perform division :

Set the index of CI to the numerator on D
Move the hairline to the denominator on Cl
Read the quotient on D beneath the hairline

fixanpLe 1.18C. Caleulate 12/8 using CT and D scales.

Solution: Set the left index of CI ta 12 on D
Move the hairline to 8 on CI
Read 1.5 on D beneath the hairline

Using C, 1, and CI scales if is possible to muitiply three fa.ct.hrs witi
one setting of the glide, This is generally faster than using” two slid
settings as required if only C and D scales are used. However, reversa
of indices is sometimes necessary, which is no fasterjbran using C ant
D alone. O

ExamrLe 1.18D. Caleulate 2 X 8 X 1.1 usi.mg\(\}, D, and CI scales.

Solution: et Son Clto 2 on D RN
Move the hairline to 1.1 on D

W

Read 17.6 on D beneath thédiairline

The intermediate product, 8 X 2g4mey be read opposite the index of CL
wrw dbrEIlbraRY SHEWY the petting. o '

. Second Factor /8)—-\ ~— Log&h——)\(———'-
= X N
ne Y
N D P R VM RN R T
There Facfor(/,/_) c 7 &
1 '\\E;al‘\;\|||;|;|||||r|f| T T[T T e |l|relmﬂiﬁluu
el 1r 00\.. 2 ia L I'5 ! s 1 i? [ {E i
P\ ,
5)’ } Log /& -
O Alternate _{ / \—F?JP5f Foctor (2)
) .\~: N Answer (176)
\\ 4 log 16 + Log [/
Log 2
Fig. 1.27.

Three Factor Multiplication: I, €I, and C Scales
Example 1.1813: 2 X 8 X 1.1 = 17.6

ExamriE 1.I18E. Caleulate 2 X 8 ¥ 0.7.

Solution: Set 2on Clto&on D
Move the hairline to the left index of CI

Maove the slide to put the right index of C a$ the hairtine
Het fhe hairline t0 0.7 on C '

Read 11.2 on D beneath the hairline
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Reversal of indices is necessary for the last product, since 0.7 on the C
scale 1s beyond the end of D.  Changing the sequence of factors will not
help in this example. It can he solved, however, with one slide setting
on a slide rule with folded seales, Art. 1.20.

ExampLE 1.18F. Calculate 14 X 9.25 X 605,

Solution: Bet the hairline to 605 on D
Place 14 on CI beneath the hairline
At 9.25 on C read 78,300 on D N

The choice of scale on which to set each of the factors is arbitrary )’ The
setting described leads to the minimum movement of slide and Ffunnes
from the center, \

Examerr 1.18G. Solve for U, V, and W ia the Lonhnued equation:
3‘)7X930—40XU—71XV 825 X W ’“,\‘

Solution: Set the hairline to 5.30 on D O
Place 3.27 on (1 beneath the hairlind?y”
At 4.0 on CI read UV equals 4.33 onj_‘)
At 7.1 on CI read V equals 2.44 on' D
At 8.25 on CI read W equalg@0 on D

www. dbraulibgary.org.in
The product of each of these pa,n*a of humbers appears on D at the index
of CI.  Any hairline position will thdicate on the CI and D scales a pair
of numbers whose product ig§he same.
1
Examere 1.18H. (‘alb@iafe 9730 % 0.935

Solution: Set the han;hne to 2.30 on D

Set 0.938en CI beneath the hairline

Res%'ﬁ‘ﬁé answer, (.465, on C at the right index of I

N\
The pr oduci of the denominator factors would appear on D opposite the
111de~< oi (,,I {or C); its reciprocal appears on C opposite the index of 1.

1
E}&MPLE 1.181, Caleulate 308 X 4.6 X 0.8

Seolution: Set the hairline to 3.98 on D
Place 4.6 on CI beneath the hairline
At 2.8 on C read 0.0195 on DI

If the slide rule does not have a DI scale it would be necessary to obtain
the reciprocal of the triple product by an additional operation.

In the day to day operation of the slide rule, efforts to use the very
minimum number of settings to obtain the answer may not be worth
while. If one has a series of caleulations, similar in form, & few minutes
spent in finding the shortest methed of computation are worth while.
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Certain of the foregoing examples using inverted scales show the possi~
bilities for obtaining solutions with minimum settings. To develop
facility in sclecting the shortest method requires considerable practice.

1.19. Common Factors in Division and Multiplication. A simple and
frequently oceurring common factor problem is in the determination of
percentage composition. An introductory example is presented to illus-
trate the natare of the problem,

ExavmrLE 1.19A. Given components of 5.2, 17.3, 4.7, and 26.4; what
percentage is each of the total? Common factor problems, contrary to
this example, are often met in the form of a table. Even when not
tabular it is usually desirable to set the given data down ingaable, with

. blank spaces for the ealeulation results. O

Ny

Given Data _,( 5.2 [ 17.3 |J 4.7 | 264" '53.6 Total
Required i 100.0¢; Total

The percentages are: 100 X 5.2/53.6, 100 >§\1‘7.3/53‘6, 100 X 4.7/53.6,
100 X 26.4/53.6. The ratio, 100/53.6, i<&~common term in all of the
percentages. Therefore, by solving the'eommon termfirst, the successive
bercentages may be obtained with oqe: setting of the slide.

W PR 84386 wm C to the nght index (100) on D

Move the hairline Sudeessively to the given values on (C, 5.2
17.3,4.7, 264

Read the pro@utjﬁs on D beneath the hairline
The tabie then is \\

Given Datg

Data @71 5.2 | 173 | 47 | 26.4 |53.6 Total

Required 0 9.7 | 823 | 88 | 49.2 [100.0 Total

Alternate ()° 082 179 T8 |lomem
’;\ ota

If Xfai;{ues to the nearest per cent only are desired, the values read from
{3}1@ slide rule may be rounded s shown in the “Alternate” row.

\ Exavreie 1.19B. Calculate percentages for the following:
Given | 12,5

6.3

—_—_—

Percen_ta-ges _} )

5.3 21.9 46.0 Total

In Example 1.19A a]i of
reversal of indices, For Example 1.198
if C and D seales are used. It is faster
are completed before reversing indices,

s reversal of indiceg i necessary
if all caleulations with one setting

Solution: Set 46 on C to the right index of )
At 12,5 on O read 21200 D
At 219 on C read 476 on D
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Reversing indices

Set 46 on C to the left index of D
At 6.3 on Cread 13.7 on D
At 53 onCread 11.5 on D

If one has a slide rule with folded scales, reversal of indices as described
here is not necessary. See Art. 1.20.

Examrir 1.19C. Calculate percentages for the following: 42.0, 15.2,
4.2, 48.6, 42.0, which total 152.0. Two slide rule settings only are™
needed for the 5 percentages. \

Characteristic of the foregeing examples is the oceurrence of thQ sﬁ,me
denominator with several different numerators. If, instead, one'umer-
ator is common for several different denominators, the cale ulaﬁi:{hs ean be
completed with one setting, or sometimes two settmgs Qf\ﬁhe slide by
using the CI and D scales.

Examern 1.19D.  Caleulate 746 divided by 142, {8.5 17 3, and 1255,

Soluiion: Set the right index of CI to 746 on D“\ (4

Move the hairline to the several dehominator values on CI

Read the respective answers on Dya35.25, 19.4, 43.1, and 0.594
W dﬂlgﬂllb]“ﬂl in 100 100

Exascern . 19E.  Caloulib 3 mly] ;9%44 14 X 581 14 X 470

This example is the same type as Example 1.19D, although at first glance
it may not appear to be. The ra(lo, 100/14, is a common term divided by
several different denominat 'qu:inutles and the CI and D scales may be
used to obtain the results W(Kh one slide setting.  The ratio, 100/14, may
be obtained by using C, and D scales.
Solution: Bet 14 on C\to the left index of D {100}

Move thevbairline on CI to: 710, 644, 581, and 470

Readzob D: 0.01007, 0.0111, 0.0123, and 0.0152

Segvliy. 1.28

N

~O 7/0 44 58/ 470
N4 K/ \6 : K K
\ \

< ™

N 1

I|I|l|l[1|ll ll|:]l||él|l ||l_|||ri_i]i“llél|!ll t|lil [

il'llr!lillllﬁilllz IIllllllsrlllilllmlﬁ Illili:h! 1I:i”‘IEI"TIIi'IJII‘IEI IFIJIIII|JII’ ‘{

100 100 iels] \_ 00 Z /00

12X 70 1 X644 (X587 X 270

Fig. 1.28, Common Factors in Division

‘ 100
Example L1OK: — 00 _ = 0.01007; — 00 . = 0.0111; 90 _ _ go128;
ple LIOR: - 10 — 001907 o gad 14 X 581
190 _ o.0152

14 X 470
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Examein 1.19F. Calculate the following:

1 1 1 _
0.0645 X 76 X 2.54" 0.0645 X 82.5 X 2.54 0.0645 X 05.5 X 2.54

A common term in these threc cxpressions is 1/(0.0645 X 2.54). This
can be reduced to 6.1. Then 6.1/76, 6.1,/82.5, and 6.1/95.5 may all be
computed with one setting of the slide using CI and D scales as in
Example 1.19E.

The examples in this article suggest: (1) search out common fa€ters and
select a method of solution which requires minimum numbenr,of* scttings
of the slide; (2) look for repeated digits, to save reading the sdme setting
twice; (3) eomplete all caleulations using one index before reversing the
slide; (4) make related computations in tabular form¢ ™\

All of these examples may be reduced to a congtant term with a sue-
cession of numbers multiplied by it, or divided ¥ip'it. 1I¢ It is & scrics of
divisions, the CT and D seules lead to minimuwhsetting; if it is a series of
multiplicatiouns, the C and I} seales lead tofMmihimum settings. If folded
scales are available, reversal of the slide n;l\ay be avoided. See Art. 1.20.

The time-saving value of thesce suggestions may not be noticeable when
the number of calculations is smg,li{'.as In these examples. However, in

wwlorbmmphblreragrmih as some mPart IT, the saving in time is appreciable.
It is a good plan to practice the fastest method even on short problems.

1.20. Folded Logarithmic Scales. A folded logarithmic scale is one
for which the beginninglor end graduation is not a power of 10, This
topie of folded scalexié Placed near the end of the chapter because not all
slide rules carry felded scales, and it is desived to make ag much of the
material as posgible applicable to the greatest number of different slide
rules.  Of thé sommonly used slide rulos shown in the Appendix, Figs.,

Al to A:&;‘Bages 182-188, folded scales are found on ail but one, the

Mannhé\'m ‘type, Fig. A.1.
LQg%.Tithm_iC scales may be “folided ” at any number, One of the com-
_menly used points of fold is, the ratio of cirele eircumference to diameter.
This is the point of fold on the CF and DF scales of Figs. A2 and A.3.

Fig, 1.29.

Folded Scales for Muliplication or Division by #
Examples: 155 = 4.71; 20r = 62.8; 40/x = 1273
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Thus, by setting the hairline to any number on D, « times I may be read
on the DF scale. Similarly, for any number on C, « times C may be
read on CF, as shown in Yig. .28, Conversely, 1/= times numbers sct
on DF are found on I, .

The CIT secale is folded at 1/x and, as the name implies, it is a C seale
inverted and folded, so that 1 /7 times 2 number on CT may be read on the
CTT scale.

The Deci-Loglog slide rule, Fig. A.5, has in addition to CF and DF
seales a sct of folded seales marked CF/y and DF/y.  The point of >

Fig. 1.30.

fold is 2.303, Fig. 1.30. This set of foldgdfi‘ucales may bhe used for some
of the same purposes as oth¥i FotPEaUHEEREY O"BHE reason for selecting
2.303 as a fold point is explained in Chapter 4 on logarithmie and expo-
nential caleulations.

The CF and DY scales, foldedzﬁt m, are useful in particular applications
involving cireles, some tngm{‘mﬁetry problems, and special formulas of
engineering. But- probabi¥the most common general use of any folded
scales is to complete a, édntinued division or multiplication without the
need for reversing indicés. :

”\s
A\ ™
T T i 37
I | 1 | | 1 (] I 1
A I R B I B A R T i i T
HLGF S 4 5 6 7 8 9 1 z 3
L S
-] 2 2 4 5 £ 7 B 2 1
'C! 1 1 1 ] I I T N S N N N A |
I T T T I L D A N LN
D1 2 3 4 5 & 7T OB 9 1

Fig. 1.31. Folded Scale Relationship: Partially Graduated Scales

Example: 4on Cat5on 1);60n C at 7.5 on D;
4on CF at 5 on DF; 6 on CKF at 7.5 on DF; ete,

It will be observed in Fig. 1.31 that for any setting of C relative to D,
the C¥ scale has the same relationship to DF. That is, if 4 on C is
matehed with 5 on D, then 4 on CF matches 5 on DF.  Thus, if a par-
ticular reading on D against some number on C is off the scale, the reading
may be obtained by setting the hairline to the number on CF and reading
on the DF scale.
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ExampLE 1.20A. Calculate 7 X 9.5/6.

Solution: Caleulate 7/6 by setting 6 on C to 7 on D
At 9.5 on CF read 11.1 on DF
See Fig. 1.32

cF | [PF

Fig. 1.32. Folded Scales for Continued Division and.Ijﬂtﬁiiplicatinn
Example 1.204: 7 X 9.5/6 = 111"

Examere 1.20B. Claleulate 7 X 9/4

ANY;
Solution: Perform 7/4 by setting 4 on C to Zon D
At 9 on CF read 1575 on DEO

If 9/4 is attempted first using C and D scales, multiplication by 7 is off
WuEelET ARHHRE 88 & Tolded scales\pr reversal of indices on C is necessary.

Exampre 1.20C. A problem ‘suggested in Art. 1.16 but not solved
there is: ~ T

N5 X 42 X 81 X 12
SN T TEXBI X 19

Using folded sqaigé,’ this may be carried out without reversal of indices
and in the seguérice the numbers appear.

Solution: /Fhe scales on which the numbers are st are indicated by sub-
scriptspand the position of the intermediate partial
breaks in the fraction bar.

PR “\ 95y, %

\ 8101? ) 1201‘ _
vV 75, 0 Dgp, D == DF o= DF % — g73,,

answers is noted at

In long problems like this, pursuing the intermediate answers from
one scale to another mugt be carefully watched, ¢

Exawpie 1.20D. Caleulate 73/37, 63/37, 53/37, 43/37, 33/37, 23/37.
Solution: Caleulate 1/37 by setting 37 on C to the right index of D; move
the hairline to the several numerator values on CF or C and read the

* A proeedure for using folded and norma] scales for division and multiplication
called the ““center-drift method’” ig recommended by Lee H. Johnson in The Stide
Hule, page 42,  {New York: Van Nostrand, 1949.) Essentially it consista in choosing
fold_ed, normal, or inverted seales for the successive steps in such a way that the
settings and intermediate partial answers are near the middle portion of the frame,
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corresponding DF or D scale as follows: 1.97, 1.70, 1.43, 1.16, 0.892, and
0.622. If 37 on C is set to the left index of D, less than one-half of the
slide will be within the scale limits, and in particular 33/37 will not be
obtainable without reversal of indices whether CF and DF or C and D
seales are tried.

Examrre 1.20FE. Calculate 26/9.1, 26/7.2, 26/3.3, 26/2.4, 26/1.5
using one slide setting only.

Solution: Set the left index of CI to 26 on D: at 9.1, 7.2, and 3.3 on (‘I
read 2.86, 83.61, and 7.88 respectively on D; at 2.4 and 1.5 on CIF redd"
10.8 and 17.3 on DF. If attempted with & slide rule not equipped With
CIT scale, reversal of indices is necessary for the latier two calanlations.

FExamrre 1.20F. Caloulate 6.2 X 0.068/370,
Solution: Set 370 on C to 0.068 on D '“,j\"'
At 6.2 on CF read 114 on DF ’
For the deeimal point position , xj\\"
o0l R
G_g ?3(73.068 w(\;r ?B?&Q‘auhbrﬂf;irg 12 ot

Exsmere 1.20G. Calculate 2.2/('3.4 x 0.7).

Solution: Perform 2.2/3.4 by §e{§£ing 34onCto220n D
At 0.7 on CIF rea\i'\onzs on DF.

Division by the 0.7 mlghtbe performed by moving the hairline to 0.7 on
CT and reading on DN “However, it is off scale, so CIF and DF are used.

\
ExampLr 1. OIL Csleulate 3.7 X 1.65 X 1.49.

Solution: Sej;zj:’}:k hairline to 3.7 on D
\(Io\«e the slide to place 1.65 on CI beneath the hairline
\ “\At 1.49 on CF read 9.10 on DF

As an alternate method

Set the hairline to 3.7 on D
Move the slide to place 1.65 on CIF beneath the hairline
At 1.49 on CF read 9.10 on D.

1
3.2 X 7.1 X 0.0048.
be solved in one slide setting using any of the commercial slide rules
discussed here. The best method of solution probably is to calculate
3.2 X 71. X 0.0048 using D, CI, CF, and DF, then take the reciprocal
in a separate operation. The answer is 9.17. '

Examrie [.201. Calculate This example cannof
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The foregoing examples illustrate typical problems for which folded
scales make it possible Lo obtain a solution with one slide setting. With-
out folded scales these problems require at least one reversal of indices.

1,21, Summary, Chapter 1. This summary is intended to remind the
reader of the fact that the many examples, illustrations, and problems in
this chapter demonstrate varistions of one simple principle.

Brief statements on methods of operation, aceuracy, and decimal point
location are intended to refresh the memory of those who may discontinue
the use of the slide rule for a time and then resume it. Parefifietical
references also are included to the articles or illustrations desbribing the
topic in greater detail. AN

L. Principle. The stide rule performs division or multiplication by
mechanically subtracting or adding lengths proportiondl to the logarithms
of numbers (Art. 1.2, Tig. 1.3). RS /

In algebraie form, if \Y;

N = 10» \\
M = 10??\..
then 4
www.dbraulibrary.org.in ;Ov"i"lb‘g N
Ji=log M
and N

p+q.\-{1§gN+1ogM = log (N X M)
T
PANg=log N —log M = log —%
“J i
The lengths gibiracted or added on the slide rule correspond Lo # and g,

but the scalés are graduated with the numbers, M and ¥ (Figs. 1.12,
i.17).

\ "
A p’ybb\l

BIoblem in continued division and multiplication is a succession of

sughiJogarithmic subtractions and additions, the answer 0 one step being

\th‘e“tfirst- factor in the next operati ou, generally withoul reading the inter-
mediate answer (Art. 1.16, Fig. 1.19).

3. Recognition of Logarithmic Seales (Art. 1.4),
suitable for performing division or multiplication
any slide rule by observing if the distance from 1 to
of the eycle length from 1 to 10 {Art. 1.3,
the same eycle length, one on the slide and o
performing division or multiplication.

3. Seale Graduations (Fig. 1.5).
finest graduation subdivision infery
Hence, the graduations n
the graduations next low

The logarithmic scales
may be identificd on
2 is about 30 per cent
Two logarithmic scales with
ne on the frame, are used for

On 10-inch logarithmie scales, the
als usually are: 0.01, 0.02, or 0.05.
ext lower and higher than 2 are 1,99 and 2.02;
er and higher than 4 are 3.98 and 4.05 (Art. 1.6).
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4. Aceuwracy (Art. 1.15). A slide rule reading which is correet to one-
fiftth of the [inest subdivision interval thus may represent an error of
between one-tenth and one-fourth of onc per eent. With care, an
accuracy of reading and setting of this magnitude is attainable, although
the accuracy to be expected decrcases with the number of factors in the
problem,

One additional significant figure can be obtained readily in simplo
division or multiplication by splitting one of the factors into two parts
and performing one part of the caleulation mentally and the other part
with the slide rule (Art. 1.15). A~

For example, the product

FXG = (P4 T6 = Fm+ FL), D
where the subscript, m, indicates the operation performcd(nignta,lly and
subscript, s, indicates the eperation performed with sliderule.
In a similar way ,w}\
N NN N N
MM M, ﬁ\
The quantity, & or F, should be split so thqt’?\,\"l or F; is large compared
to Ng or Py, and thus the mewbaldhrétﬂthv&ﬂ?i'&-bs'gamily perforraed (Art.
1.15).
3. Manipulation of the Stide Rule. In ﬁolding the slide rule, one should
avold squeczing the frame so the slide binds. Better control and more
aceurate setting are obtained if.ghe hand opposes the motion of the slide
being made by the other hagd?(‘Art. 1.8, Figs. 1.9, 1.10, 1.11).
0. Operation ProcedureX \The method of operation for performing
division, or logarithmic(Rubtraction, is: C and ID scales (Arts. 1.9, 1.11,
Figs. 1.12, 1.14). &~

Set the haig‘li\ﬁ}'i:o the numerator on D
Place the denominator on C beneath the hairline
Read the\quotient on D opposite the index

CI and 3 Beales (Art. 1.18; Fig. 1.28)

Set the index of CI to the numerator on D
Place the hairline to the denominator on CI
Read the quotient on D beneath the hairline

Conversely, multiplication, being a logarithmic addition, may be per-
formed by interchanging the sbove methods of operation. C and D
scales (Art. 1.13; Fig. 1.17) '

Set the index of C to the first factor on D
Move the hairline to the second factor on C
Read the product on D beneath the hairline
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CT and D scales (Art. 1.18; Fig. 1.25)

Set the hairline to the first facior on D
Place the second factor on CI beneath the hairline
Read the product on D opposite the index

7. Folded Scales (Art. 1.20; Figs. 1.29-1.32). In any one of the above
operating statements, folded scales may be used throughout. That is
DF, OF, and CIF may be used for D, C, and CI. It should he noted,
however, that the index of the folded scales is near the middle rather
than at the end. '

Also, the quantity set on the slide may be on a folded scalg if the

answer is read on the corresponding folded scale on the frame(™), That is,
for example £\
Set the index of C to the first factor on D R N
Move the hairline to the second factor on CF (&
Read the product on DF beneath the hairline )
and AN
Set the index of CI to the numeratgi':}n“D
Place the hairline to the denominatér on CIF
Read the quotient on DF benedth ‘the hairline
ibrarv.org.in R ’
wor dRrag e “Wactors (Art. 1,190 Fig. 1.28). Problems in which one

numerator or denominator, qiantity takes on a series of values while
o-ther terms remain fixed qoay be solved with one slide setting, or some-
times two slide settir\ Sfolded scales are not used. That is, if k repre-
sents the constant, térm, and @y, s, 3, . . . represent the sueccessive
values of the vapigble, four typical situations are:
A\ X
(@) koy, hpgbes, . . .
(b) 25, E%

P g o orifE = 1/ this s like (2)
(G’}},;E kE ko

m'“\. ETE T

S Lo Loy kb ok .
(a} [ k_fsz k.rxa’ , or .’E? :’l‘,‘? 13—3} v E = l/k’

For (a) then

Set the index of C to the constant term, k

Move the hairline to successive values of ¢ on C (or CF)
Read the products on D (or DF)

For (h)

Find 1/ and carry out as for {a}
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And for (¢)

Set the index of CIto 2 on D
Move the hairline to successive values of x on CI (or CIF)
Read the quotients on D {or DF}

For (d)

Find 1/% and carry out like (c)
N\

The quantity, & or k', may be given as a produst or quotient of several

numbers; these may be redyced to a single number first, )
9. Decimal Point. 'T'wo methods are suggested for placing thie Hecimal

point (Art. 1,10).
SIMILAR SIMPLE Numaer Scunun K7,

AN

4. Round off the given numbers to n umbers having ehe digit and zeros.

b. By cancellation and mental approximation, determine the approxi-
mate answer, \ o

¢. Place the decimal point in the digits éad" from the slide rule to
_correspond with this mental approximation,

STaxDARD NuMnug Merrgp dbrqq‘l;i'n'l'}i;‘y-m'g-m

a. Write each number ag a standa‘r& number, that is, with the decimal
point following the first digit

b. Note the correction nurpb?} for each, that is, the number of places
which the decimal pointwmust be moved to form the standard num-
ber, calling & move to, the left, 4+, and a move to the right, —.

¢. Determine the resultant correetion number by algebraieaily adding
all numerator.@{)rf'ection numbers and subtracting all denominator
correction nunibers,

d. Using thqo\m’incled off one digit numbers, determine decimal point
position by mental approximation.

e. Applythe correction number in reverse to the result obtained for the
standard numbers.

1.22. Problems on Chapter 1.
15 iT i iv

Calenlate the tollowing to 4 significant figures using slide rale and mental
arithmetie.

a 1785 6237 8595 0.1277
1625 7.468 T481 8752
p 2062 52.27 0.6247 127.85
19.82 2485 3042 5278
¢ 15.15 X 40.73 216.7 X 0.04875  0,7352 X 52.65 1176 X 0.6375

d 2622 x 8,032 1232 X 0.8623 3682 X 5.081 6145 X 4187
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15 .o iU v

Caleulate the following using minimum slide movement, Note that it
is possible to solve any of these problcms in one slide setting using certain
of the commercial slide rules shown in the Appendix. The problems
provide good practice even if several slide settings are required.

1 1 _1 L
© 527 0.93 0.082 8760
1 1 1 e
t 7 432 0.0052 6.05
g = X 1.06 x X 79.5 7 X 0.085 x X 16.8 2\
152 3.76 0.935 0.027
T e T T2 N
. BT X 84 09 X 3,42 0.92 X 855 STix 72
PR T 0615 dLd
, 36.2 X 19 162 X 138 275 X 304 /) 0.106 X 92
1 7 0a0s 043 T ee S 99
k33 X 71X 13 026 X 48 X 61 42 X RX5.5 6.7 X 17T X 9
107 X410 X 130 9.6 X 1.8 X 75 36 XWX 4 TZX4LX 44
1 1 O 1
M 3axX8IX3 52X 31 X6 \NBX37 X179 1.42 X 6.9 X 51
] i < 1 1
176 X 17 X 4 FT’YO’ZTL'}E% 6 X 27 X 28 10.7 X 182 X 77

library.prg.in, . :
Rl & P Poffowing usmg’mm]mum stide movement. Note that it

N

is possible £o solve any of these problems in two slide settings,

372 X 97 42\>< 4 1 X 17 2 162 X586

126 X 21.2 \ / BRXI2 X5 oF X &2

8.62 X 46 108 X _(33 % 36 208 242 X 21
P x 169 L. 5 32 X 14X 36 76 X 02

8§72 X 19.5 23 X 30.3

ql(XQl{(SinQ X137 768 583 70 X 104 X 3.8 X 1]

322 X186 20.6 405 X 3.92 795 3 155

20 37 0.3 X .72 X 1.55 128 X 0.505 1.27 X 403

.D\ét'érmine decimal point position only in the answer.

\
) 2

N s

i _ ] . 0.00123 _ 260

746 X 0.29 0.385 1 .35

TR ALSE g _kEo? __ P Y 2
0:0088 " yg0 om0 ~ 8 grdnn = 895 g s~ Tt

1w
Solve for U, ¥, W, in the following proportions:

g 57 _ 52 _ 095 150
U "V W T8t
155 760 V003

95 - U T 9300 W

.

b

c 1
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7092 175 ~ 120

Using minimum slide seiting for each group caleulate the following:

Tr:l: . e . - .
© Tuo (@ = 305;17.2; 840; 7040) .
21933; (z = 38.5; 780; 6.05; 1280) O
g 0.905c (z = 107; 427; 840; 221) O
h 0.042x (x = 45; 226; 187; 820) N
i %5 (z = 272; 0.088; 32.4; 927) -
i M2 (@ = 12.2;1.78; 475; 0,05)
z ey LGy, RS
1 R
k o (z = 8.75; 23.5; ;%8; 0.92)

|~

'3 GBI ER
Calculate and prepare graphs on Wiform coordinate paper for each of
the following, showing ca.lculatjp@s in tabular form.

m Resistance, R, versus el tﬁﬁ;current, 1, for a voltage, E, of 110 volts.
Use R scale in ohms, 340 20; 7 in amperes, 5 to 55; B = E/I.

n Speed versus time g distance of 500 miles. S in mph, 100 to 125;
T in hours and Ip.irlu‘tes, 4t05 hrs; S = D/T.

¢ Electrical condugtance, G, versus resistance . R in ohms, 0 to 100;

G'in mhus,.'({%s"f].z G=1/R.
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SIMPLE POWERS AND,fOOTS

D

2.1. Theory of Scale Constructiof,.” As mentioned in Chapter 1, it, is

o DosBiG fiorpatargnerating procetlures for slide rule caleulations without

a knowledge of the theory ofscale construction. However, more rapid

learning and greater facility in acquiring new skills are possible if the

theory is understood. . Consequently, as a general plan of organization

in each chapter, b K%hé general theory of and operating procedures fof

particular commereidl slide rules are presented. This article is devoted
prineipally to thetheory.

Mechanicaglz}, the principle of operation for most of the problems of
this chapter’is simply to “equate lengths,” or, to set on one slide rule
seale ghd-read on another. In other words, no movement of the slide is
requiired for simple powers and roots.

¢NIn algebraic terms, if

vV U =NXN =N

lag U =log N +log N =log N2 = 2log N @21
or

%log U=1logN 2.2

Thus, to read squares of numbers directly from a slide rule a pair of relate:
logarithmic scales for N and U is required on which the scale factors (i
54
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simple terms, the distances from 1 to 10) are in the ratio of 1/2:1,0r1:2,
corresponding to the coeflicients of log U and log N in Eq. (2.1) or (2.2).

This condition is fulfilled on each of the selected commercial slide ru] es,
Figs. A.1 to A.8, pagos 182-189. The A and B scales shown on gome of
the slide rules have a cycle length one-half that of the basic C or D scales,
Fig. 21. Thus, if one thinks in terms of the full-length C or D scale as

. . i .
the unit scale with coefficient 1, then 5 log U corresponds to the A or B

scale, and log N corresponds to the C or D) scale. ~
Compressed £\
/_ Scales _\ ¢ \A
! Cycle ——] ! Cpocke e ¢
Flo /0 100 L M| ooo
/ / (¥
. - o0
AR AN Rt F LT LTI ]
|' L fo 4 3 rmsinti [ I S PN, N Ak
51 [ I i‘lgfgl}téléig\_ [ N J;~Jgiél;|gt;’§
/0 O 400
‘1 | i T SR N o 1A AR S '
‘j: 1 ) T T 1 I‘”g\'éi“‘l’”'\la
! AN -
. 0
L__ ! Cycle \ o
Extenaed Soales ,': “
. . A 1oty or'g.in,,
Fig. 2.1. Scale Designations and™ ‘gnd l&?&g Tea dgthe gnrhlmple Power and Root
al

Se
Scales: {{, W, B, G and D

The v/~ scale of Fig. Sfaﬁd the R scale of Fig. A.7 are twice as long
as the basic D scale, angharé folded at /10, Fig. 2.2. Eq. (2.1) is the
form of equation apprépriate for these slide rules, .

In a similay mar}l{ér; if

O K=uxuxu=om
O\

then N
WK ~ log M + log M + log M = log M* = 3log I (2.3)

N\

¢

or

%log K=logM (2.4)
Eq. (2.4) is the basis for the K and D seales found on several of the
commercial slide rules shown in the Appendix, pages 182-189, and illus-
trated with partially graduated seales in Fig. 2.1. Eq. (2.3) is the basis
for the v/~ scales of Figs. A.5 and 2.2.
1t is interesting to note that if the A scale from one slide rule and the
scale from the other should be placed on the same slide rule, fourth
Powers and roots could be found with a direct setting. The K and v
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scales would enable one to read ninth powers and roots. The Versalog
slide rule, Fig. A.7, includes a K scale, and R scales like the v/ scales.
This combinsation permits the direct solution of sixth powers and roots,

2.2. Graduation of Scales. The various log seales discussed in Chapter
I when applied to a 10-inch slide rule are all gradusated the same and in
the manner shown in Fig. 1.5,

One - third Cycle

TS Extended Scale Folded info 7hree Sections
Low r 5
Mrb’d/e |".|||||||I|]|HI[iIIIﬁlll[lllIﬁlII]IIIé-'r:a||[JJI|ﬁlIJiJIIrlfl'l|||J|||]T|||f||I|Jﬁlr|!1|u|||?llr:l|lill ;’r\r:;\
, . . ' . . ll[l:hh[l]fllil{ll
Hiak O R A | |||tf|||l+ L g
? ~ L LT I?Hi_l1IIJIEHIIJHIJEIIIifJIIH,JHIfHII%
..( p)
Ore  Ciycle &’ |
f Compressed Scale 'S
‘1 ! e ‘ (TIPS A SR A
| I [l T i H TTHwr AT - 1
Dl____ I _.'_I_a_ 3 LAY 5.8 7 &,9 1,
; ‘o A\ e
Low |!,-||[||||.}|.'|;'I|||Iﬁ:n|'- B! ..‘u_mﬁn_ru'l[llr{' IB‘. ‘PJME’I_L_I_ t l_|_|_|l_[ Ll il |j_|[|‘
High Lot g [.r.?.;.|.|..J.I||m|||.|51| Ir't|J.’II|?IIII|IJII'IrlIII|IIiI?IIII[[I#ICT‘JHI!II.'IF
VorR OneS¥alt Cycle

Externded ";Sca/eh‘Fo/dea’ mnto Two Sections

ibr Org.in "
Wiig! -glgra f:]sai e Iigfegilg%ations agd\Their Cycle Lengths on Simple Power and Root
: im\ Scales

z 3 —
SQNé’s: A, Cand D,v orR

As shown in Figsn2.1 and 2.2, the additional seales for squares, cubes,
Square roots, anthetibe roots described in Art. 2.1 vary in their length for
one cyels { 1'1;\0:\'}0) from one-third to three times the C and D scale length,
ObviouslNor readability and aceuracy the manner of subdivision on gl
these 80dles cannot be the same as on Cand D,

Figsi2.3 and 2.4 illustrato in diagrammatic form the general plan for
ﬁduation of these scales. As on O and D, there sre three different
graduation intervals in g eyele, but the point of changeover is different.

Graduation Infervals

f——-ao0s
o 254 OV eoz
! 3 %

I 1=|?|?fi|‘?|?r
Middle Thira igh Third

Graguation Intervals

Q005 ——‘T—— OO
2 3
i | P



58 THE BASIC SLIDE RULE PRINCIPLE

and 2.15 is three graduations from 2; and 2.12 is estimated at two-fifths of
the way from 2.1 o 2.15. See Fig. 2.5,

ExampeLe 2.2C. Bet 1.82 on K. Selution: The graduation interval in
this portion of K is 0.05; and 1.82 is two-fifths of the distance between 1.8
and 1.85. See Fig. 2.6.

e’ 82 e

A

N
K i 3 5 ) el
Lelilaby f:|Jlmmllallhh[djil[lhl||u|||rﬁ|’mlllllu|luull||||\|||\:’ Jﬁ
& & A&
N
- Ty

Z £

Z\Y

L/

> A

L—

Fig. 3.6. Scale Settings on théK Scale
Examples: 2.2C:1,8242.2D: 4.2

Examreie 2.2D. Set 4.2 on K. 5 Solution: This setting is approxi-
mately one-fifth of the way slonghe K scale. Sce Tig. 2.6.

Exasurir 22K, Set 2.42 o™/ or Ry Solution: This selting is

w A pprhLRER WRF&Pourths of the way along the slide rule. Since this

complete scale is twice agiong as D, more graduations can be inserted

than on D;in this porti\{sﬁ of the scale there are twice as many graduations

V4

282 820
45 a.22
240 _\q - &30

§|le||[|r||1|J|||||J||22|-1||mR|||[llmlu|a=r||fu/em|4|||E||;Fu|||?“|I.u|ﬁ”:f...:?;.ninuhu|||

|
|I|IF|!III|1|III||IlrrlilI]IIH'IIIITIIIIllluhlIllllla[llll]lIII|I|L|[||II[H|J|||||? A N B [T

{OrR.i,)Qz é) @

Fig. 2.7. Seale Settings on v/ or R Scale
Examples: 22E:2.42; 297892

as on ). The finest graduation interval re

|
presents 0.01, the small 4
;e?resents 2.4, and two graduations from 2.4 represents 2.42, See Fig.
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2.3 and 2.4. However, the basic requirement for sguares and square
roots is a pair of related logarithmic scales on which the length of a cycle
on one scale of the pair is twice as great as on the other,

A single statement of the method of operation which is applicable to
all forms of slide rules is:

Set the number, N, on the expanded scale of the related pair of
log scales

Read the square, U, on the compressed scale (a scale facter
one-half as great as the expanded scale)

¢
o\

It would be possible to devise a scale arrangement as indicated in Tig,
2.9 which would give the deeimal point position direcﬁgf."’ However, the
accuracy would be poor or the length must be ng&t’; hence, the more
satisfactory plan is to determine decimal poigtSpoésition independently

A
Compressed \Scaﬁ-

0.0/ V\O.f Y SONSN—/00  </000  <10,000
- A ] \ \s \'\ . L
— 1 i 1 \ —
T \] L v boed Ve vl et HIHIIII] ____

*

Exponded Seafe
www . dbrautihrar .uEg.Lf e

T 3
\4{ U T TTTTIA T T TTTTT T TTITTTm
——-—— 74 1 1 | —_—
] l" —

_..____Z ’m\\ L LY
o1 \\‘ ~/ t—‘-BaLs;'c: Cycte 4—‘ o 100

Fig. 2.9. Model of §1ide Rule for Direct Reading of Decimal Point Position in Square
4N Roots or Squares

of the slide“lv,iia, just as in Chapter 1. Again, either the ‘'similar simple
numbersscheme™ or the ‘‘standard number” method may be used.
Severaldescriptive examples show both methods,

..\I\E?AHPLE 2.3A. Caleulate 3242,

Solution:
Set to 3.24 on D Set glass to 3.24 on +/ R
Read 10.5 on A Reacgil 105 0n D ot

For placing the decimal point

+2 +2 +2 +4
324" = (3.24)* = 3.24 X 3.24 = 105 = 105,000

or note that

300% = 90,000 -
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Exampry 2.38B.  Calculate 0,01872

Salution:
Set glass to 1.87 on D Bet glass to 1.87 on 4/ or R,
Read 3.50 on A Read 3.50 on D
For placing the decimal point
-2 —4
0.01872 = (1.87)% = 3.5 = 0.00035 ~

of note that O\

0.022 = 0.0004 oY’

The 2:1 ratio test, described in Art. 1.4, may be used to redegnize Joga-
- tithmic scales on any slide rule. Comparison of the length of a cycle
(1t0 10), which in the case of squares is also 2:1, is equally easy. There-
fore, if one has a shide rale with the scales marked differently, by iden-
tifying those log scales having a length ratio @f.\z :1, the operations
deseribed here ean be ocarried out. N

The general aigebraic equation to be solvediin finding either squares or

®

fquare roots is &

LR Y

) ¢ 3

U = No?; %\f&g’d@iﬁawmwwg,in (2.2)

The subscripts denote the sﬁde"’rz\ule scales on the frame eonstructed for
these quantities, Thereforéfto find the square of a number between 1

T LGN ] High FHalf——
L V.4 2N 1 .
;:?Riif\j'; 2 |[ f N Ser v/
| OF L r i rasmeel 18 2t
2=z ot 525" oo
V=2 VEE = 5~ 0~
. - 2
§ ] 3 J.il.i,|éfﬂélé}f ]
| -
59:‘/\‘{ { ' J fead.
Basic Cycle - i N=VU

Fig. 2.10. Sqnares of One-Digit Numbers on Non-Folded Scales
*nd 10 using one of these slide rules, as shown in Fig. 2.10

Set the number, NyonD
Read the square, U, on the A scale

Since the B scale matches A, and the C scale matches D, B and C may
_be substituted for A and . Or, if the index of C is aligned with'the
idex of D, then A may be used with C or D), and B with C or D.  Align-
"¢ indices in this way may avoid the need for turning a stide rule aver to
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read the square. Some slide rules are made which do not include A and
D scales on the same side, or B and C seales on the same side.

The slide rules shown in Figs. A.5 and A.7 are based upon the slightly
different form of BEq. (2.2)

Up = N\/_ZOI' Up = Ng?
and :
log Uv = 2log N/~ or log Up = 2 log N (2.1)

Thus, to find the square of a number between 1 and 10 using one;{f these
slide rules, as shown in Fig. 2.11

. /&29_{_
! RNZIFYE v
’ | NG f Set N
N =G _r%1?|?|\§l?r‘r‘|.'_
Vor g V2 =5~ (7 =2
e - One —im{r‘i:ﬁ"yc/e -
Fig. 2.11. Squares of One-I{igit"ﬁumbers on: Folded Scales
wuww dbraulibrary.oxg,in, \/_._'61‘5.}3,; read U = N2on D
Examgpies: 22 = 4; 5t = 95
Set the number, N, of'the v/ or R scale
Read the square, U,)Jn D
AL
Exampry 230“ Caleulate 5.2-2.  Solution: Since 527 = 1/(5.2)?
one may caleglate 5.22 then find the i”eciproca]. A shorter method is:

Set the ha.l{];ﬁe to 5.2 on CI Set t0 5.2 on 4/ or R,
1/5.2 apgears on C 5.2 appears on D

Read 1/¢5.2)2 on B as 0.037 Read 1/(5.2)2 on DT as 0.037

01-: \’ Y
N

N/ Set the hairline to 5.2 on v/ or R;
5.2% appears on D
Match index of CI with index of D
Read 1/(5.2)? on CT as 0.037

Since to square a number means to multiply it by itself, it is apparent
that another method for solving any of these problems is touse Cand D
scales, or CI and D scales, as deseribed for multiplication in Chapter 1.

2.4, Square Roots. The algebraic equation

U=N%logl7 =2 log ¥ (2.1
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may be solved for U if & is known; such is the topic of Art. 2.3. Or, it
may be solved for N if {7 is known. Tt is a laborious task to find square
root hy the usual arithmetical methods. A slide rule makes it as easy as
squaring a number. From the theory of Art. 2.1, it may be observed
that the method of operation is:

Set the number, U, on the compressed scale of the related pair
of log scales

Read its square root, N, on the expanded scale (scale factor
twice that of the compressed scale)

In specific terms applicable to the A and ID seales: oA

Set the hairline to the number, U, on A
Read N, its square root, on D

&

Although both eyeles of the A seale are often numbered’;ﬁke with one-
digit numbers only, it should be observed that when $aking square roots
of numbers between 1 and 100, the right cyele (high%alf) must represent
numbers from 10 fo 100, ag shown in Fig. 2.10: ;'PI‘Hé loft eyele (low half)
represents numbers from 1 to 10. . )

ExampLE 2.4A. Calculate 4/2.12. o™

wwwd.]af?ﬁlibrary.org.in

Solution.: R
Bet to 2,12 on low half of A AL\ Set the hairline to 2.12 on D
Read 1455 on D ,{"x\ Read 1.455 on R or v/ (low half)
A
Exsmrir 2.4B, Calculaj} /75, or (T5)%.
Solution: ‘ ’
Set to 75 on high half of A Set. the hairline to 75 on D
Read 8.66 on ]'% Read 8.66 on R or 4/ (high half)

Obviously, Q/-?mﬁ could be read on the other half of the scalc as 2.74.

For attmbers 100 times as large as these examples, the square roots
would Be ‘\/m? or 10, times as large. For numbers 0.0001 times as
large, the square roots would be 0.01 times as large. Fig. 2.12 shows, for
a range of numbers, this change in decimal point position and the corre-
sponding decimal point position of the square root. This table could be
extended indefinitely to larger and smaller values. The information of
Fig, 2.12 may be summarized by the general gtatement:

In taking square roots the middle index of the A scale represents
odd powers of 10.

The same relationship illustrated in Fig. 2.10 must exist for 4/ or
R seale. That is, numbers shown set on the Jow half of A will be set on
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Scole Compressed Scale Ush?
Narme
10000=— |[Read
100 Low 1000 High ' or
A i Hall o} Halt 100G sar
O ol .
r: 1 g b talalalebibily Loy I bebatibailil
l’ i | LR R '—J
ol a5 = K| ser
> | ; o= e
—-10 50 Jooe [N
7" *
Expanded Scale N=vD Ny

Fig. 2.12. Diagram of Operation and Decimal Point Locatig:&fw’oi’ Squares and Square

Roots on Non-Folded ScalesN )

Scal SMENS
e Cornpressed Scole Lll*f%
‘\
——I000 NY% 10,000—
—I00 R\ .ooo_l Rged
D N
-—i0 A\ 100~ | | 5
| - N I
7 L T T
ww . diblg IB::raL y,org,ﬁn m\' Ll Lt
78 3
Lr \\ . | ' l ‘ J
| \ Low Half 32 .
o”: —ic AN 30— s;r
Ry,Ra o \ui ! t ' T b Read
—\5—"\}« 4 High Holl wo—J 1[N
S 40 00—
o ..\' Exponded Scale N=~U
A\

Fig. 2.13. Disgram of Operation and Decimal Point Location for Squares and Square

Roots on Folded Scales

D and their square roots found on R; or 4/  (low half). See Figs.

2.12 and 2.13.

The tahbular information of Pig. 2.13 may be generalized as follows:

The point of fold of the v/ or B scale represents the square root of
odd powers of 10,

The correction number method provides an equivalent, and sometimes

easier, way for determining which half of the scale to use, and it also aids
in placing the decimal point.
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1. Move the decimal point an even number of places to form a number
between 1 and 100.

9. Write the associated correction number above or below this number.

3. Tf the number obtained is between 1 and 10 use the “low half” of A
{or Ry, A/ ); if the number is between 10 and 100 use the ““high half” of
A (01' Rg, ‘\/_ )

4. The correction number for the answer is one-half of the correction
number noted in Step 2. :

Examery 2.40.  Caleulate (650) %, Q|
+2 \:\
Solution: (630)* = (8.50)% O

The setting for 6.50 is on the low half of A (or v/ 0;'~1P:1],:a,nd the
resultant correction number is N\

7
W

Lep =+t Y
Thus . ::;‘3
- 42 +1
(650)% = (6.50)¥\= 2.55 = 25.5
Exayrie 2.4D. Ca.lcxllat.ew@qpéggaﬁ)“ The one-fourth power, or

y S ljbrar‘y.org.U% .
fourth root, may be found {{\tﬁkmg the square rogt twice.

6
Solution: (0.000075) &/ (75)%

The resultant chi:gé‘c.tiun number for the first square root operation is
O

1
N 2

...\;," }

and the Setting is the same as for Example 2.4B. Thus

(—6) = —3

—6 -3
(75) = 8.66 = 0.00866

Taking square root again
—4
(0.00866)" = (86.6)"" =

The resultant correction number is

1
L9 =2
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and the setting is on the high half of A (or R, 4/ ), scale, or

—4 —2
(0.000075)% = (86.6)* = 9.3 = 0.008

Examprs 2.4E. Caleulate 4/0.0056/4/140. This example may be
solved by taking square roots of numerator and depominafor, then their
quotient. Generally it is faster to perform the division first, in effect
writing \.

—4 5 w\:\
4/0.0056 _ \[{_}.0056 _ ( 56 )’*ﬁ _ (;0)% O
V140 140 140 3
+2

,\\
using & slide rule having A and B as well as and D scales the fastest
solution is: Caleulate 56/1.40 by setting 1.4Q0ait B {low half} to 56 on A

{high half}; the quotient appears on A at {he left index of B; the square
root is on D at the same index or P\

8 _3
(40)*i = 632 = 0.00632

raulibrary.or g

EX? pLE, 2.4F, CalLuIate 0.086—%5, This represents 1/+/0.086.

erefo

Setto8.6on B (lpw\half) Set the hairline to 8.6 on DI

+/8.6 appears, a’/C 1/8.6 appears on 1)

1/4/8.6 mag\be read on Cl as0.341 1/+4/8.6 may beread on +/ (high
O° half)

The.é@rreetion number of —2 in the denominator, upon taking square
’{Qoﬁ‘becomes —1, and in the numerator 4-1. The decimal point position
\iﬁ the answer is 3.41, .

If a pair of log scales with 2:1 eycle leugths is not available, it is pos-
sible to find square root by using a pair of log scales of equal eycle lengths.
For example, the C and D scales, or CI and D seales, may be used. The
method consists in finding, by trial, two cqual numbers which multiplied
together give the number for which the square root is desired.

Examrie 24G. Calculate 4/33 using CI and D scales.

Solution;

Set the left index of CTt0 33 on D

Move the hairline until the same setting is obtained or CI and D
(5.73)
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If /3.3 were wanted, the right index of CI would be appropriate. The
answer 18 1.82.

92.5. Numerical Problems on Squares and Square Roots. For prac-
tical problems on squares and square roots applied to various fields of
work, see Part I,

Perform the caleulations indicated below.

24 2B 2C 2D
a 1.25° 1/0.165 0.273° /156
b 37.2° /270 176° /743 \
c 0.49? /437 4.52¢ 4/50.2 _\'\..,\
d 0.0782 4/39.5 76.22 V0128 (N
e 10.72 o002 08626 VEZE
f 8252 +/0.0185 89.4% /3765,
g 9.05° /A19 0.01522 Y3085
h 1467 4/31.6 245 /B34
i 0.3920 /1230 36.13.0)" +/0.0059
j 87.5° V0.75 184507 V285
k 777? 4/92.5 p2ier /111
1001362 /18000 _oW0.00372 971
m 0.00288 /3L, . 01482 %/20.95
n 410° VT8 v dbeggibrary org/MD196
) b
o 25.7° 305 8.23 /69,300 _
p 0.00175° »/0.008 116° ~/0.000378

2.6. Cubes. As.l{é:.s'c\-ribed in Art. 2.1, the basic requirement for finding
cubes and cubergdts is a pair of related log scales on which the length of a
eycle on one s{;}ﬁ “of the pair is three times as great as on the other. The
2:1 ratio tedh) deseribed in Art. 1.4, may be used to identify logarithmic
scales, agd comparison of the lengths of a cycle on the seales will reveal
those hawing a 3:1 ratio.

The general algebraic equation to
cube roots is

he solved in finding either cubes or

Ky = My’ %log Ky = log Mo 2.4)

The subseripts denote the slide rule scales constructed f or these quantities
on several of the commercial slide rules, Appendix pages 182-189.
Therefore, to find the cube of a number using one of these slide rules:

Set the number, M, on D
Read the cube, X, on the K scale
See Fig. 2.14
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Fig. 2.14. Cubes of One-Digit Numbers on Nen-Falded Scalgs\
Set Mon Diread K = M?on K ) \ N

Examples: 2% = 8; 3% = 27; §° = 125

Ny

Certain slide rules, as noted in Art. 2.1, are bas,ed upon the shght]y

different form, that of Eq. (2.3) ~\
log Kv = 3 log MVS (2.3)
Thus, to find the cube of a number usmg'\ﬁhls shde rule:
Set the number, M, on the ~/.3\ scale
Read the cube, K,on D\
See Fig. 2.15 N\
. d braulibt'ar%@i’%i-ﬂ—:i-’;—— One - third Cycle
¥ 1 BYzz-s $f7-3  VYe=2-— N
Regd \“" ‘ t
A=k AN I i I 4 | | H-Sefar
A, ] 1 | [N SRR TS N N I
s —r
NE y o
/ 004
. }:'\\ *’Eﬂ Ve ri-2r 2'a —\\J 1000 7
w\fgééx\o‘. T T T T LTI e
L

Fig. 2.15. Cubes of One-Digit Numbers on Folded Scales
Examples: 2% = 8; 3% = 27, 5% = 125

A single statement of the method of operation which is applicable to all
forms of slide rules is:

Set the number, M, on the expanded scale of the related pair of
logarithmic scales

Read the cube, K, on the compressed scale having a cycle length
one-third as great as the expanded scale
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The decimal point position must be determined independently of the
slide rule. The similar simple number scheme or the standard number
method may be used. Both are illustrated by several examples.

ExampLe 2.6A. Calculate 16°

Solution:
Set glags to 16 on D Set to 1.6 on v/  (low third)
Read 4.10 on K Read 4.10 on D

Q"
For placing the decimal point, 16° is somewhat less than 20%, which
mentally is 8000; the answer therefore is 4100. Using standard Q’um\bers

+1 +3 A\
167 = (1.6)% = 430 = 4100

ExamriE 2.6B. Calculate 0.045% ’"‘}\\

Selution: \\
Set to 4.5 on D Sct toX5%on +/ (middle third)
Read 91.0 on K Read:91.0 on D
For placing the decimal point “::;”:“

2 Y -8
0.045° = (bl 0% oL
Mentally, 42 is 64; and 4.'Qs ‘somewhat Jarger and is 91.
Examrie 2.6C. Caleyldte 94°.

Solution: P\
Set to 9.4 on D“\';\" Set t0 9.4 on 7/ (high third)
Read 830 op{%" . Read 830 on D
For plag.in’g}'the decimal point
O~ 100° = (10%)? = (10)* = 1,000,000
and
945 = 830,000

Examerg 2.6D. Caleulate 1.06%, This may be written {1.06%)% or
(1.062)%. Choosing the first form the solution is:

Set the hairline to 1.06 on D Qet to 1.06 on v/ (tow third)
Read the cube on K as 1.19 Read 1.19on D

Bet the hairline to 1.19 on D Qet to 1.19 on 4/  (low half)
Read the square on A as 1.42 Read 1.42 on D.

On the Versalog slide rule, Fig. A.7, set 1.06 on Ry; read 1.42 on K.
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Exampre 2.6E. Calculate 0.0195% This represents (1,/0.0185)%
Therefore, align the indices of CI with D and

Set to 0.0195 on CY Sct to 1.95 on v/
1/0.0195 appears on D 1.95% appears on D
Read 135 on K {1/1.95)% may be read oz DI

To place the decimal point: 1/0.02 is 50, and 50% is 125,000. The answer
is 135,000.

Since to cube a number means to multiply it by itself three(fiches, it is
apparent that another method for solving all of the problemﬁ of this article
is to use C and D seales, or D, CI, and C scales, as descmbed for multipli-
eation in Chapter 1. O\

2.7. Cube Roots. The type form of equation \\

K = M%log K = 3 Jog'M (2.3)
R
may be solved for K if M is known; thidis’the topic of Art. 2.6. It may
be solved for M if K is known. In$his form one may write

C XY

1()gjf;' ~ %leg K= (2.4)

wyw dbraulibrary.org. in .

It is a more laborioug R to find cube root than it is square root by the
usual arithmetical m\t ods. Using the slide rule, & simple setting and
reading accamphshes the task. However, care must be used to select the
correct section’ofthe K or v/ scale depending upon the decimal point
position. %"

NS
From"t@e’general theory of Art. 2.1, it may be observed that the
method\of operation is:

AN
<\;~Set the number, K, on the compressed scale of the related
pair of logarithmic scales

Read its cube root, M, on the expanded scale (cycle length three
times that of the compressed scale)

In specific terms applicable to the K and D scales:

Set the hairline to the number, X, on the K scale
Read M, its cube root, on D

Although all three eycles of K are sometimes numbered alike, it must
be observed that when taking cube roots of numbers between 1 and 1000,
the left cycle, or low third, of K represents numbers from 1 to 10; the
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middle cycle represents numbers from 10 to 100; and the right cycle
represents numbers from 100 to 1000 as shown in Flg 2.14.
For the v/ scale the operating statement, is:

Set the hairline to the number, K, on D
Read M, its cube root, on +

Depending on decimal point position, the cube root is read on the low,
middle, or high third of 4/, Fig. 2.15.

Fxamrrk 2,74,  Caleulate +75. ~
Solufion: O\
et to 5 on the left eycle of K Settoden D O
Read 171 on D Read 1.71 on v/ (I6wthird)
ExamrerLr 2.7TB,  Calculate 4/250. “\
Solution: \\
Set to 250 on K (right) Set to286 on D
Read 6.3 on D ' Read B3 on v/  (high third)

The correction number method\-pa(orlh;hlxlxbsammng way for determining
the portion of the scale to use for humbers outside of the range 1-1000.

. Move the decimal pointl a‘\multlple of three places to form a number
hetween 1 and 1000. X\

2. Write the associatédeorrection number above or below this number.

3. If the number obtained is between 1 and 10 use the ““low third "’ of
K {or /7 J+if thenitmber is between 10 and 100 use the “middle third ”
of K {or v/~ 94F the number is between 100 and 1000 use the “high

third” of K for /).

4. The Qm‘fe( tion number of the answer is one-third of the correction
mlm}%‘poted in Step 2.

Exawpie 2.7C. Caleulate +/6330. Solution: Move the decimal
point three places to the left, thus

43
/8330 = (6.330)%

The eorrected number is found on the low third, and

+1
\/5.330 = 1.85; /6330 = 1.85 = 18.5
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Examris 2.7D. Calculate (0.0000893)%.
Solution: Moving the decimal point a multiple of three places to the right

—~6
(0.0000393)* = (39.3)#

The number 39.3 is found on the middle third, and
—6 -2

(30.3)" = 3.4 = 0034 §
. O\
since o N
1 N\
3 (—6) = —2 \

Exampre 2.7E. Calculate (2.62)7". This’mi'epreaents 1/+72.62.
Therefore, align the indices of CI with D an{L

Set to 2.62 on K (low third) Sej5~f:u’2.62 on DI

/2.62 appears on D Y2462 appears on D

Read 0.726 on CI o\Read (1/2.62)® on ~/  (high
vy third) as 0.726

wikbadpeitablog seatgsiwith 31 cycle lengths is not available, it is possible
1o find cube root by a trighmethod similar to the trial methoed for finding
square root deseribed ifi Fxample 2.4G, page 66.

Exampre 2.7F. &hculaft—* /80 by trial. Solution: Using D, CI, and
C scales as descmbgd in Art. 1.18 multiply the three equal factors trying
successively: N¢/

"\n -
2 4,41, 42,43, 4.4

Anothe'l\\urlal or two will indicate that 4.31 is very elose. Certain of the
sugges{;ed trial values could be skipped because their product is consider-
oably smaller than 80.

‘If A, B, and D scales are available, a somewhat shorter method is:

Set the hairline to 80 on A (high half)
Move the slide until the same reading is found at the left index
of C and beneath the hairline on B

Practically, it is seldom necessary to use this method, but an understand-
ing of it is helpful. The reader can test his understanding of the method
by finding /800 using A, B, and D scales.

2.8. Numerical Problems on Cubes and Cube Roots. For practical

preblems on cubes and cube roots applied to various fields of work, see
Part IT.
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Perform the calculations indicated below.

73

2E oF 2G 2H
a (2.42)° v/1.08 (7.25)° V/8.27
b (4.85)% /213 (18.7)¢ J78.5
¢ (0.112)3 /176 (0.832)* /490
d (276)3 /840 (48.5)* +/1660
e (8.92)° 0012 (0.608)*  ~/0.624
f (0.0316)F  +/0.0037 (577)% ~/89.5
g (93.3)8 /5265 (6.43)% +7/0.0072
h (0.514)% /4,600,000  (22.6)° /630,000 L)y
i (0.081)8 /39,000 (3.235 /1060 4
j (190)% +/0.555 0.021)° /245
k (108)2 ~/69.5 (12.4)® 805/
1 (20.4)° A/0.0029 (27.8)% ¥01032
m (461)3 +/0.008 (20.2)* NN/ 157
n (1.025)% /038 (0.792)% & V378
o (2.38)3 V17.3 (0.518)F  ~/0.00027
p (0.045)3 /48,700 (1.51)° ~/0.826

2.9. Other Simple Powers and qut‘s‘“.' A number may be squared
fwice to obtain its fourth powet, ., J&d ’%ber_is cubed, then squared, its
sixth power will be obtaigcd as };T%gﬁhn in Exampld 2.6D, page 69. Ina
gimilar manner other whole nmiber multiples of 2 and 3 as powers oF
toots may he obtained. L\

Certain fractional powérs also may be obtained using the cube and
square scales togethem < Thus, one may solve for P or B in the equation

\'\“ P = R¥ or P* = R* (2.5)
In logarithmi&'ﬁ'm
D Ly,
AN %log Px = 3 log R (2.0)

With kf t;rence to the particular slide rales discussed here, since the scale
factor, or length of one cycle on A is one-half as much as the length on C
or D seale, and onc eyele on K is one-third as long as the D scale, if R is
set on the A seale, P may be read on K.
Eq. (2.6) may be written

2 log Py~ = 3 log By~ @7
In this form, the setting on 4/ and </ seales is indicated. ~ Since the
coefficient of log P is 2 and the N/ scale is twice as long as Cor D, P
Isfound on 4/ ;the 4/ scaleis three times as fong as the C or D scale,

hence log R with coefficient 3 is found on v : .
As another method of analysis, & number set on A would have its
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square reot on D; and the cube of the number on D appears on the K
scale. Or )
P = (R = R” (2.5)

Of course squares and cubes of 3/2 powers may be obtained by
methods of Arts. 2.3 and 2.6. Although 9/4, 27/8, and other such
powers of numbers are seldom wanted, the possibility of obtaining them
by raising to the 3/2 power a second zmd third time is worth noting for its
relationship to gencra) slide rule principles. )

Of course Eq. (2.5) may bhe written N\

R = P% O 28
7NS “
and this may be solved for 2 on the particular slide rqleq 48 follows:

Set the hairline to P on K Set the haxrl{ne to P oon +/
P* appears on D P2 appears}m D
Read R = (P")2on A Read\R = (PP on ~/

The decimal point posifion is semetime {rotblesome in these fractional
power problems, but Fig. 2.16 should? bé helpful. For several of the
following examples the decimal point ‘position is completely worked out.

= & -
Frory Cmbessed Seale P=R

www.dbfaulibraryorg.in Ny
K

F
2
=%

4 0

0‘4- o? \ o2 o
rl_l & {_mum.t. _I
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g‘::\‘. 0 ID"’ 10‘ R

¥

. :\ Exponded Scale Rel -p2

Fxg.\z 16 Diagram of Operation and Decimal Point Location for 8/2 and 2/3 Powers
\ ) Exampie 294, Caleulate 3.3%,

Solution:
Set the hairline to 3.3 on A Set the hairline to 3.3 on A
3.3% appears on D (less than 2) 3.3 appears on D (as 36)
{(3.3*4)2 appears on K as 6,00 +/3.3% appears on v/ as 6,00

Exampin 2.9B. Caleulate 0.15%.  Solution: Move the decimal point
a multiple of two places to form a number between 1 and 100, then

Set the hairline to 15 on A (high half)
+/15 appears on D (as 3.87)
3.87% appears on K, as 58.0
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or

—~2 -1 -3
(0.15)* = (15)* = (3.87)* = 58 = 0.058

The 3.87 need not be read and one may place the decimal point in the
58 read from the slide rule by observing that 15%* is greater than 15 and
less than 225, which is the value of 15 The correction number is

3
S(=2) = -3 A

Using v/ and ~/ scales A -
—1
Set (0.15) or (1.5) on v/  (low third) K7,
-1 -3
{L.5)* appears on D (as 3.38)
-3 —4 -4 -2 o4
3.38 = 33.8; (33.8)"* = 5.8 o\
—4 ON\Y
(33.8)% is read on 4/ (high half) . ,’:‘l
Exavrrm 2.9C. Calculate 485%. N
W

wyidbraulibrar y.org.in

Solution: "\
© +o
Bet to 465 on K (high third det t0 4.65 on 4/ (low half)
2O 12 +4 43
465% appears on I¥hearly 8) (4.65)% is on D (as 21.6, or 216)
\O~ +3  +1 .
(465%)2 appeatshon A as 60 (216)% = 6.0 = 60 appears on ~
..\'7,"' (low third)

Anﬂth{l‘\a\:;y for placing the decimal point is: 400 * is 20; therefore, 465"
is grester than 20, and 4657 is greater than 20 and less than 465.
Exaxrre 2.9D. Calculate 56007

Solution:
+3 +3
Set to 5600 on K {low third) Set the hairline to 5.600 011_}-}3/_
+3

-2

+1 +3
(5.800) appears on I (as 1.78) (5.600)* appears o D _‘(_a; 31.6)
+1 +2 ~ .
On A (1.78) = 3.15 = 315 On </ (middle) read (31.6)as 3.15

ExampLe 2.9E. Calculate 30,000%-
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+3
Solution: Set the hairline to 30.0 on K (middle third)
+3 +1
(30.0)’* appears on D (as 3.11}
+1 ' +2
On A the (3.11)? is read as 9.67 for 30,000
This intermediate result on A must be squared to obtain the 4/3 power,

or using A and B scales, for example

+2 42 4 S
9.67 X 9.67 = 93.4 = 934,000 O\
Another method by which it may be easier to determin:é the decimal
point position is as follows: £

1 4 N\
30,000 = 30,000 "¢ = 30,000 /30,000
~ 30,000 X 3L1+ = 934000

Examere 2.9F. Calculate (0.275)%. /s represents 1/(0.275)%.
To solve this with one setting, a slide~tule is required which has an
inverted seale associated with the scal8yon which the setting is made, or
associated with the answer. The)particular commercial slide rules
shown in the Appendix do not hawve an inverted scale associated with any
vonie dbehelikedey AERN /" , or R. Therefore, the problem may
be solved by finding 0.275% and then taking the reciprocal in a separate
operation. Thus, N\

@.\935% = 0.422; 1/0.275% = 2.36

It would be posgible to construct a pair of log scales having many other
ratioz of cyele\lengths, representing other powers of numbers. In fact,
charts of thigpeture for a number of different powers have been published.*

2.10. E:’;\:htions Containing Simple Powers or Roots. The preceding
exam;ﬁe\ds one which may be solved more rapidly with LogLog scales.
In faet, it is possible to solve all of the examples of this chapter by using

) oLbﬁLog seales along with C, CI, and D scales, as described in Chapter 4.
However, for some problems the accuracy attainable with the LogLog
seales is less than it is with the square and cube seales. Turther, certain
common equations containing simple powers and roots with coefficients
are not as simply solved by LogLog scales. If the LogLog scales are used
for these equations it may be necessary to read and re-sct on different
scales for several distinet operations. '

It will be obscerved that the previous examples in this chapter, with
very few exceptions, are solved by mechanieally equating lengths on two
log scales of eycle Jengths appropriately related for the exponent involved.

1 N
Hi]lfiilﬁlig:fnn' C. Albert, Nomographic Charts, pages 4-27. New York: McGraw
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The examples in this article are slightly more complex in that addition
or subtraction of lengths is also used. That. is, these examples require
division or multiplication along with simple powers or roots.

The solutions described with these examples are the ones requiring
minimum slide mile manipulation and which, if possible, avoid reading
o one scale and re-setting that quantity on another scale in order to
complete the ealeulation. This minimum setting for certain examples
is possible on only one, or perhaps two, of the commercial slide rules
shown in the Appendix. The technique of selecting a procedure which
will lead to minimum settings is difficult to express in general termsl\
Fssentially, it is to anticipate the seales which will be used for the power
or root operation; then carry out the divisions or multiplications oz Sedles
which will make reading and re-setting unnecessary. For sqme’of the
simpler problems the reader might profitably attempt a minifumn setting
with his glide rule before examining the solution given. ¢

If one is to be proficient with the slide rule, facility in)solving some of
these equations is desirable. Others, which arisilinfrequent]y in the
application of the slide rule, are included prinfarily for reference. If
a series of quadratic equations with varying‘(g&ﬁicients is to be solved
with the slide rule, for example, reference 40 this section and Example
210K should be helpful. I, on the othethand, a single quadratic equa-
tion is to be solved, & short method %i; Eo%on is unimportant.

y auli

ATY.org.an

109 Solution: If 4/7 is found

first by a method which will éja}it on D, the remaining ecalculations may
be carricd through in one setting of the slide by using the (C and D scales
for the continued divisianrand multiplication. The method is

Examrrr 2.10A. Caleulate @~¥'

NS
Set the hairling\to 7 on A (fow half)
+/7 appear§on D (2.64 approx.)
Place 19¢2bn C beneath the hairline
At 15\.5;’011 C read 2.15 on D

Fxhabrn 2.10B. Calowlate z = %Ti /85. Solution: The reasoning

15 the same as for Example 2.10A, and the form is similar, but it is & cube
Toot rather than a square root which is to be obtained first. Thus

Set the hairline to 85 on K (middie third)
/85 appears on D (as 4.4)

Place 8.4 on C beneath the hairline

At 71 on Cread3.72on D

-_

® A large number of slide rule settings for special formulas using cortain commereiak

glide rules are tabulated in Thompson, J. E., A Manual of the Stade ule, pages 171~
3. New York: D. Van Nostrand Co., 1930. '
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18.5 .
Exampie 2.10C., Caleulate z = 2.1,}%—- Solution: If the

operations under the radical are performed using A and B scales, the
result may appear on A, and its square root on D; multiplication by 2.1
then ean be performed using C and 1) scales without reading intermediate
partial answers. '

Set the hairline to 42 on A(high half)

Place 68 on B(high half) beneath the hairline

Move the hairline to 18.5 on Blhigh half) O

Partial answer is on A heneath the hairline

Squarc root of partial answer is on I beneath the \ﬁmrhne
(3.4 approx.) A

Multiplication by 2.1 vields 7.10 A

4

The decimal point pof,ition_ for the quantity. uﬁ&br the radical must be
carefully chserved. It is very easy to obtainMhe partial answer on the
ineorrect half of A, then the square root is mb}m rect in the ratio of 4/10:1,
or 3.16:1. \

If the foregoing three examples aré solved on a slide rule having A~
and A/ or R scales, Figs. A.5 and-A.7, puges 186, and 188, additional
operations are required. The ~q},1ant1ty, 4/7, for example, is found on

wig iR beranel st be rea,d and re-set on D to complete the solution.

On the other hand, Example 2.10G: can be solved with fewer operations

on g slide rule havmg aé( scales instead of a K scale.

69 X 4.2¢
IxameLy 2.10D.\\Calf-ulate r=— ?;, + Solution: For two of the

commercial glidgvrules pictured in the Appendix, squares may be read
on the D s¢ale; the other squares are read on the A scale. The two
operating &t }tem{-n‘rb for the shortest setiing are

S%he hairline to 4.2 on D
N N4 2 appears on A beneath the hairline
’ Set 8.5 on B beneath the hairline

At 69 on B read 143 on A

) 4

or

Set the hairline to 4.2 on 4/ (or Rs)
4.2% appears on D beneath the hairline
SBet 8.5 on C beneath the hairline

At 69 on Cread 143 on D

Examrre 2.10E. Caleulate the circle areas: 23.52; 24.42; 25.32-

Solution: These are similar in form to the preceding example.
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However, the simplest method of operation, because of the #/4 in all of
the problems, is

Set the right index of B to x/4 {or 0.78564) on A
Move the hairline successively on C to 3.5, 44, 5.3
Read the several answers on A beneath the hairline

ar

Set the right index of Cto 4 on D
Move the haitline to the successive diameters on 4/ (or R) ~
Read the several answers on CF

The latter method may be analyzed as follows: N\

Ifdison +/ (or R) scale N\
d? appears on the D scale, and

(¢
md? appears on DF '$)

Adjust the CF scale so the readings on CF will be)onc-fourth of the
alighed DF reading. \\

Examrie 2.10F. Calculate the vircle areasi«?.6%; »8.77%; 70.8%; #10.9%,
Solution: This is like the preceding exarpledn form, but with a coefficient
of 7 instead of 7/4. One methoed is: N '

Set successive values of raditfs) ﬂ,bB?PW BPIE-Rale
r* appears on D Q
7r? appears on DF

P&\

¢ }
6.7 X 4.3°,
8.2

Solution: Set the haifline to 4.3 on v/
4.3% appeats beneath the hairline on D (approx. 80)

Using the (! aﬁa\j scales to complete the division and multiplication:

¢ '\..
IxamrLE 2.10G. Ca]cul;x\e z =

P]‘%?&‘. 5\2 ;)n (! beneath the hairline
AL8.7 on C read = = 65.0

If 43 is cubed using a K scale, the result must be read and re-set on D
for carrying out the division and multiplication. It is easily sdone, but
requires a reading and setting operation not needed with the 7 scale.

5.4 X 18Y’ o
EXAMPLE 210H. C(Caleulate z = 1.6 (W) Solution: The

division ang multiplication in parentheses can be performed using C and
D scales; the answer will appear on D (as 47.5), and its square will be on
A multiplication by 1.6 can be performed with A and B scales. Or, by
Teading the partial answer one may note that it reduces to

2 = 1.6 X 47.5! = 1.6 X 47.5 X 47.5
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This may be performed simply by using CI, C and D scales as in Example
1.18D, page 40. : _

. 4,5%

Examrrr 2.10]1. Calculate z = 8.1 X 4.5%,

17.2

Solution: Set the hairline to 4.5 on K (low third)
4.5% appears on 1) beneath the hairline
{4.5%)2 appears on A beneath the hairline
Set 17.2 on B beneath the hairline
At91onB,readz = 14400 A ~

If K, A, and B scales are not found on the slide rule being ysed, intetr-
mediate reading and setting of partial solution is necessarys

24 L M
Examere 2,10J. Calculate z = 5.2 7—6%65—9) ;(’i&)lut’&'ﬂn.‘ If one

had a slide rule with K scale on both frame and slide 4ntermediate read-
ing of partial answer for this problem would net\be necessary. None of
the commereial slide rules, Figs. A.1 to A.8, ofsthé Appendix is made with
moving and stationary K scale, so using a y.one of these slide rules it is
necessary to calculate and read 7.6 X 5,9/18.6 first.

Exampie 2.10K. Caleulate x =/A7.5% + 4.22. Problems of this
nature occur in slide rule apphcatmns much more frequently than some
of the, pther the mg}egﬁp this artlcie Hence, skill in solving problems of
"‘ins type is important. One ebVious method for solving this example s

Het 17.5 on D; readmN 52 on A as 306

Set 4.2 on D; r &4220nAas 17.6
Mentally add g% + 17.6 = 323.6

Set 323.6 on\A" read /323.6 on D as 18.0

The \f AP R scales also may be used in ‘?11‘1’11]3]‘ manner. However,
in problesigisuch as this in which one of the numbers (4.2} is less than
one-foutth of the other, (17.5), a simpler, as well as more aceurste, slide
rule res'ult is obtained by an approximation:

" \ ¥

3} 422
N\ ?= 18t o5
Ir algebraic terms, o solve
= EFETE
the series approximation
b%
r=a+ % (4h < a) (2.9

gives sccurate results under the limitation, & less than one-fourth of a.
Only the second term, b%/2q, requires slide rule operation, and for the
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numerical example

x = 17.5 4 0.504 = 18.004

Ag an indication of the accuracy of the series approximation, the error
of the method for several ratios is:

Ruatio Approximalion Frror in x

a/b Per cent  One part per:

5 0.019 5200 ~
4 0.046 2180 .

3.5 0.076 1320 RAY.

3 0.139 720 O

2.5 0.276 360 N

ExampLe 2.10L. Caleulate z = +/8.6% — 2.2% Thiqo\éxample may
be solved by the same kind of series approximation askhe preceding one.

Thus :.\\.’
9 92 » £ &/
s =00 5ilyg @B
In algebraic terms X )
dbridibrary org.i
o= \/&2 — b\;ﬂ.;wd .Ig‘é;]bl ar 4%1 g<lr&) (2.10)

The theoretical error of using/this approximation for a/b of 4 is slightly
greater, but negligibly so for slide rule work. It is one part in 1920,
instead of 1 part in 2180, for Example 2.10K. For b progressively smaller
than one-fourth of a; the theoretical error declines rapidly, so that if b is
0.1a, the approximation formula will give better than slide rule reading
accuracy. O~

ExamrLe 2(10M. Find the roots of the equation: 2° + 5.42 = 7.1,
Quadratic e§uations such as this can be solved by trial, aided by » slide
rule, R‘i&\helpful to divide by z, then z + 5.4 = 7.1/z. The Cl and D
seales ogh be used to solve the gquantity 7.1 /x in one slide setting for
various trial values of .

Solution: Set the right index of CI to 7.1 on D _
Move the hairline to successive trial values of # on CI: 2, 1.5,
1.2, ete,
Read 7.1/z on D
See Fig. 2.17 for final setting

As preliminary trial values, 1 and 2 might be gelected. It is then evider?t,
that a root lies between these numbers. The produet of the two roots is
the term 7.1, Therefore, the final hairline position marks one root on CI
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and the other on D). In this example, both roots are positive and the
coefficients are positive in the form the equation is written. Negalive
coefficients or negative roots are as readily solvable, cxeept for requiring
care with signs.

B,
X =£09*—\\ [c;
FIIIII‘IIIIIHIIIJ‘IJINIJ.IIHIIEEIII[IJJ‘IIIJI Iullllj.l_lu.lll S — N\
‘l)'l'l [HNSHA Iéllll [UHK |l|||||I£Il||||nnénn|nii A

#]
7'\
Ho-g.a9* 7/0 }w

Fig. 2.17. Solution of Quadratic Equaﬁo%l 3
Example: 2.10M; x + 5.4 = 7.1/z; 1.08 4:;&& = §.49

ExamriE 2.10N. Tind the roots of the gzqgation 3 — 4T7x — 38 = 0.
H the equation is written D

w2 — 47 A % =0
\
successive values of z may be fried to obtain the roofs. For example, if
V& PTRHAEAEY °F e Pemaindr Is not zero, but changes sign between the
two. Several trials will lefid to 7.24 as one root. In a similar way, other
roots of —6.42 and ——08‘2 may be found.

On certain commeéreisl slide rules it is possible to make a single setting
and read both 38/% and =2

A slide rule,ignot a great deal of help in solving cubic equations, but
does aid in trial caleulation methods.

2.11. Summary, Chapter 2. 1. General Form. The logarithmie scales
discusgediin this chapter permit the solution with one setting, by equating
lengths on appropriate slide rule scales, of the general algebraic equation

P

N oo
\ ) 1t = g or 3 = xbe

or in logarithmie form
log x; = (b/a)(log x2) (2.11)

for values of b/a of 3/2, or 2, or 3, or reciprocals of these. Sums, differ-
ences, or products of these numbers as exponents may be calculated by
reading intermediate answers and re-setting (Example 2.6D). The
LogLog scales discussed in Chapter 4 are useful in solving Eq. (2.11) for
b/a having any value.

Tt would be possible to devise a pair of related logarithmic scales to
solve Eq. (2.11) for any desired value of b/a, but because of limited use-
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fulness compared to squares and cubes the general purpose slide rules
include only 2:1 and 3:1 log scales.

2. Commercial Slide Rules. Each of the commercial slide rules shown
in the Appendix, Figs. A.1 to A.8, has two log seales In addition to the
basic C and D scales. There are four ditferent lengths represented, how-
ever.  In terms of the basie D, the scale equations are:

llog Ta 1log T

2 3 * ,

2log zn, 3 log xy— \
log xp O\

Thus to find the equation solved by equating lengths on a p:—@iﬁ@f these
scales, one may equate the appropriste terms above and trdnaform the

equation. For example, the A and D scales solve Rt

N

1

5 log xs = log 2o

2 N
. A

which is w7

2.7 = xp; or 1, = T

Similarly, for v/ " and A/ scales o0

2 log 2 B IPRy-ome

3. Decimal Point Position, _Mental approximation with given num-
bers rounded off to one digit and’ zeros 1s g satisfactory method for placing
the decima] point in squar%e or cubes of numbers, Example 2.6C, page
69. The standard number method is helpful for very large or very
small numbers, (Arf,{ 2,8). For example

NY 43 43 43 +6
6000% = (6.0) = 6.0 X 6.0 = 36.0 = 36 X 10°

V —2 -2 -2 -2 -6
0.04 = (4.0)° = 4 X 4 X 4 = 64 = 0,000064

The correction number method is by far the most satisfactory plan for
Ing square roots or cube roots of numbers whose answers lie outside
the Primary eyele range. This method more clearly shows the scale
®¥ele on which to set or read, as well as indicating the decimal point
Position,
The correction number method may be described in general terms as
ollows. 15 10m or 10—, m being an integer, is factored out of a number
Whose gl root is to be found, then

V10"P = 10 {/P; and /10P = 0.1 VP
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Factoring 10" one, two, or three times thus has the effect of a decimal
point shift of one, two, or three places, respectively.

The worked out examples of this chapfer are only for m of 2 or 3 and
10 of 100 or 1000. Other values of m are possible; on the Versaloyg slide
rule, Fig. A.7, page 188, for the K and R scales m would be 6. For this
pair the decimal point would be moved a multiple of 6 places fo obtain
a number between 1 and 1,000,000, then set on the correct cycle of K,
and 80 on.

4. Bolution of Equations. (Art. 2.10) Quadratic equations and equa-
tions containing other powers often can be solved by frial for real roots
using the slide rule (Examples 2.10M, 2.10N}. In many pra@h(al ealeu-
lation problems, one positive root only is sought. ™y

A direct method for performing divisions and mulﬁp}lcatlons along
with simple powers, and without reading mtermed@te values, is some-
times possible. This requires anticipating the gcales on which a root or
power will be found, and performing division#yer multiplications with
the scales and in the sequence which coordifigtes with the root or power
operation. The Examples 2.10A to 2.10L h‘lustra,te the method.

2.12, Problems on Chapter 2, Perﬂorm the calculations indicated
below, N

Solve the following:
www.dbraulibrary.org.in

N

N 3

ar P %K
a /167 + 3.57 Y V05T 2.8 /18* + 10.8?
b /0.192% + 0.082%\ " /7.8 F 0.62 V/420° + 1820°

¢ 4/0.27% - 1.85%", /0352 + 0.182 4/0.96® 4 0.72°

d v/32° + 260 V22408 A/0.067% + 0.31*
\/\/202 i /762 — 15% +/0.98% — 0.56°

f 0 1,§§ - 0.0362 4/0.071% — 0.0352 /4502 — 952

g /1967 — 340° +/0.467 — 0.082% /1.27% — 0717

h A%0.24% — 0.102* V8122 — 1.7 4/0.54% — 0.13°

\Find one or more roots for each of the following:

i x? — H6r = 17.5 3z — V520 = —-2.7 xt— 62¢ = —120
jx? 4892 = —105 522 — 17,6z = 15 z? — 2.4x = 1.52
k2 —37r =48 z? 4+ 88z = —2.9 x — 7.2x = 6.5

1 a&? — 20z = 63 1.72% — 32z = 25 ¥ — 0.6x = 0.15

Solve the following with minimum possible number of settings.

o 256 \/8.2 75 X 38 | 76.5
- ) N 013 +/18 X 31

. 192 \/ f0.96 X 0.41 152 X 12.8
T 073 72 +/14.9
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21 2J 2K
127 v/760 746 315 X 16Y*
® T09] 21x 215
82.8 v/0.037 [0.013 X 25 123\
P o017 42.2 051 X 0.73
2L

Caleulate and prepare a graph for each of the following:

a The force of wind on a rectangular surface is given by the equation®
F =0004AV? where F = force in lbs; 4 = area in square\i'eét;
V = wind velocity in mph, 0 to 60. Select one or two different

Y
T,

values for A, N

b The force of wind on a cylindrical surface is given by ‘the bquation:
F = 000250V where F = force in'lb per foot of ]e'nét D = diam-
eter in ft; V = wind velocity in mph, 0 to 60.\Sélect one or two
different values for D. \\

¢ The power required to drive a particulax vénhlatmg fan is given by
the equation: P = 1.25 X 10-78° wher‘e S = speed in rpm, O to

1200; P = power in hp. ™
d '117he volume of a cylindrical tanlks 13 glven by this equation: ¥ =
2 Al d li
250 o8 whore D = dinmiat i BB} H = height in f,

1{t; V = gallons. N )
¢ The Francis’ weir forninla is: Q@ = 8. 33pH* where & = width of
weir, 10 ft; H = head water, 0 to 1.5 ft; @ = discharge in cfs.

f The period of pe ﬂdulum is given by: T = 2r J‘ where T = period

of pendulumm.\see, L = length of pendulum, ft, 1 to6;¢ = acceler-
ation of gr@v‘ity, 32.2 ft./sec.?
Ny
a\"

Q~

"
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TRIGONOMETRIC FUNCTIONS
AND CALCULATIONS

K7
’..:\"

3.1. Principle and Arrangementsof Trigonometric Scales. As showr;
in Chapter L, the cyclje nature ofithe log scale permits multiplications anc
gﬁf&%lglgagrllltlﬁ' a""g]%cfegi{ﬂlc aceutacy” for any numbers, large or small, if
the deecimal point position-dg determined separately. In Chapter 2, for
simple powers and roo!:s,}the decimal point position for numbers on the
expanded scale of s\ﬁair may be shifted at will, Figs. 2.12 and 2.13,
page 64. N\,

The trigono;r{eﬁﬁc functions and the slide rule scales for them are
cyelie, but nétron a decimal basis. That is, tan 70° is not 10 times
tan 7°, for example. Two important negative characteristics of the
tl'igﬂl'lqzv(\{étrit: slide rule scales result from this non-decimal property.

’l,(f’,l"he angle value marked on the scales cannot be extended by
“\\ changing the decimal point position.
2. Trigonometric funetions for all possible angle values cannot be read
from the slide rule.

Thus, the tangent scale on some commercial slide rules ranges only from
5°43 or 5.71° to 45°,

Although at first glance this appears to be a serious limitation of the
usefulness of the slide rule for trigonometry, it is possible, by making use
of trigonometric properties and relationships, to read directly from the
slide rule the tangent or any other of the six trigonometric functions over
a much wider range than 5° to 45°. Mechanically, the method of opera-
tion for reading trigonometric functions is to equate lengths on the

86
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appropriate scales in the same manner as for the simple powers and roots
of Chapter 2.

If triangles are to be solved with the slide rule, operations of division
or multiplication arc required along with the setting for sine, tangent,
or other function. Thus, the solution of triangles requires addition or
subtraction of logarithmic lengths along with the trigonometric scale
setting.

Many variations in slide rule design have been made with regard to
the placing and association of the trigonometric scales, For example, thes
trigonometrie scalos may be found on the frame or on the slide, or on boths
Slide rules have been made on which the trigonometric scales were asso-
ciated with the B scale, or with the C scale; or, a sine scale may g0 with
B and a tangent scale with the C scale. On some slide rulessthe trigo-
nometrie seales increase to the left; on others, they increase:t:o the right.

The commercial slide rules shown in the Appendix, Fi@. Al to AS,
have been selected partly because of the variations in\the trigonometric
scales.  Although not shown, a sine and tangent, a(%le are found on the
back of the slide in Fig. A.l. Several of these'slide rules have scales
graduated in degrees and minutes; most are indégrees and decimal parts
of degrees. On Fig, A.2 the sine scale is ,gs’soéiated with the B seale and
the tangent scale goes with C. umhﬁ&ﬁ-ﬁﬁ[ﬁgh}ﬂ ’Fg;%(_}]r}lometr%c scales are
on the frame; the other slide rules have these scales on the slide.

In general mathematical termgf3f

'im’\~ sin A
A\
then A
’t\'“' ]_()g g = lOg 21m As (3'1)
7N\

and if \\~

\‘ :; Yy = t,a,n A
then \M} W

log 5o = log tan A 3.2
By (3.1) and (3.2) are the forms of trigonometrie scales for most of the
tommercial slide rules shown in the Appendix, Figs. Al fo AS, the.; sul?-
Scripts denoting the names of the scales on which reading or setting 13
Made,

I one wishes to determine for an unfamiliar slide rule the appro.prxate
Scales on which to read sine or tangent, a variation of the 2.: 1 ra:n.o test
deseribed ip Chapter 1 is helpful. Since sin 30° is 0.5 and sin 90° is 1.0,
the logarithmic scale on which 0.5 matches a 30° graduatﬁon and 1.0
Matches with 90° wil! determine the pair of scales to use for simes. Also,
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since fan 26.5° is slightly less than 0.5 and tan 45° is 1.0, the pair of scales
for tangents may be found by a similar method.

3.2. Graduation of Scales. The plan of subdivision of trigonometrie
scales depends upon their length, and also upon whether angles are
divided into decimal parts of a degree or into degrees and minutes.

0.05% 0.4" 02—
T l-_? )

Slé' . o . 20" 30" . (v
005 o . 05 JH- 5

N

<
o
o’
gy
o

2SN
Fig. 8.1. Diagram of Finest Graduation Intervals and Scale Lim‘tts on 10-Inch
Trigonometric Scales, Decimally Divided < |

i -

- =) i /¢ 9.
i il \ ¥
sL |;5 . 3r 6 Bot

5t ! 10— 30 ——FsHl=se

Fig. 8.2, Diagramn of Finest Graduation Ipt?r‘}éls and Scale Limits on 10-Inch
_ Trigonometric Scales, Divided Into Minutes

Figs. 3.1 and 3.2 indicate in diggrammatic form the usual plan for sub-
vidividhrgdHeserycal€sfor 10-ifich slide rules on which the trigonometric
scales are associated with the C and D scales. '

As a matter of convenienee the examples are worked out in decimal
parts of degrees. Somg of the problems and some of the answers are in
minutes and secands for parts of degrees.

3.3, Sines. ,Thé subseripts in Eq. (3.1) indicate that the operating
procedure foPgbtaining the sine of an angle is:

N
Se{ﬁhé' hairline to the angle, 4, on the S scale
’ Read sin 4 on the C scale beneath the hairline

.@@éral examples illustrate the setting and the placing of the decimal
N point.

Exomple 3.3 Sin 70°
£
Exormple 34 /;-Cgs 20°
s

Sin &5 / .
Cos 85 ‘{ o5 Fig. 3.3. Scale Settings for Sines and

S7 e N Cosines

s 8 0 %0 Examples: 3.3A:sin 70°; 3.3C:sin 5%
hthibd s A Leredeendid | 3.31: ¢in10.09; 8.4A: cos 20°; 3.413: cos 85°

C~tudidendin, Dutuad

cos72-""] 094

Sin” Q0%
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Examrrk 3.3A.  Find sin 70°.

Solution: Set hairline to 70° on 8
Read 9.4 on the C scales

The sine never exceeds 1.0, which is the value of sin 90°. 8in 70°, there-
fore, is 0.94. See Fig. 3.3. Some slide rules have the complementary
angle values also marked on the 8 scale. These are omitted from Fig.

3.3.
Examrre 3.313. Find sin 7°.

Solution: Set the hairline to 7° on S )\
Read 0.122 on the C scale, Fig. 3.4 N\ *

Ex 340 N
<Cos 894" | 8368

N DTN Sin 7’
o

Bl hbedebeds

s

Fig. 34. Scale Settings for Sines and

Cosines a7

Pramples: 2.3B:sin 7°; 3.4C:cos 89.4%;
3.4D:cos 1 0.11

Ny

N '5 Brod

3 Cl h g
S T T 1
Naoios | Zas ol g-afez
W W, dht.qdllb]ﬁkﬁ n £x 33

Examrerr 3.3C. Find sin 5°

Solution: Set the hairline to 5% on ST
Read 0.0872 on{he€ scale, Fig. 8.3

As noted on Fig. 3.1 tile 'S scale includes angles whose sines lie between
0 1 and 1.G; the ST sQaIe includes angles whose sines lie between 0.01 and
For angles grdaller than 0.57°, or 0°34, and having sines less than
0 01 the sine ;%ﬂot be read from the slide rule, but the sine of a small
&ngle can b found from the approximation
'\

\H\‘ T sin 4° = @ A° (for small A; 3° or less)

= 0.017454°

Exameie 3.3D. Find sin 0°27. Solution:. The angle expressed ip
degrees is 27 /60, hence from HKg. (3.3)

sin 0°27" = %Z « 0.01745 = 0.00785

(3.3)

Several of the commercial slide rules have gauge marks useful for
~ finding sines of small angles if the angle is expresse sed in minutes or seconds.
A mark (') to the left of 2° on the S scale, or it may be on the C scale at

344, identifies the minutes gauge mark.
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Set the hairline to angle in minufes on D
Set (‘) heneath the hairline
At the index of C read sine on D

The seconds gauge mark (") near 1.5° is similarly used for small angles

in seconds.
Examrrt 3.3E. Find sin 127°.  Solution: The S scale is marked only
with angles up to 90°, therefore, the supplementary angle identity

sin A — sin (180° — 4) = — sin (4 — 180°) s
.\\\'
will determine the setting, and o v
sin 127° = sin (180° — 127°) = sin 53° —0(?}798
Examrrr 3.3F. Find sin 200°.  Selution: I‘rom\l"l‘{ {(3.4)

sin 200° = — sin (200° — 180%) = — &ih 20° = —0.342

A,

Examrik 3.3G.  Find sin 0.7 radians. , \It‘v. ould be possible to gradu-
ate the § scale in radians, but it is noPedmmon practice on general pur-
pose slide rules. Radians may be convérte-d to degrees using the relation

) 180

www.dbraulibrary.org.in A" 2 ba (3.5)
™
o = B57.36a
Thus \\ )
' OTrad—')T&XOT—ml"

and \ 2

I

\’ gin 40.1° = 0.645

Obvlouély, the inverse trigonometrie functions may be as readily found.
lhe\two steps in the operating procedure are merely reversed. Thus, if
\cun Eg. (3.1) is known, to find A:

Set the hairline to x; on C
Read 4 beneath the hairline on the appropriate scale, S or ST

Examprire 3.3H. Find sin—? 0.753.

Solution: Set 0.755 on C
Read 49° on &

Exampin 3.31.  Find sin—! 0.09,

Solution: Set 0.09 on C
Read 5.165° on 8T
See Fig. 3.3
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The decimal point position, less than 0.1 and greater than 0.0, indicates
that the angle is on the ST scale.

Exampie 3.3, Find sin—! 0.00872. This is below the limit of the 8T
scale, but the angle in radians is very nearly the same numerical value

4s the sine, or 0.00872, so
0.00872 X 57.3 = 0.50°
3.4, Cosines. The complementary scale relation
cos A = sin (90° — A} (3.6)~,

forms the hasis for reading cosines from the slide rule. A double Va-lu\ed
. seale including the complementary angle values is sometimes ma;]{eﬁ'.on
the § scale. 1If this is done, the angle scale for cosines is read‘ip‘reverse
direction without subtr¥eting from 90° to obtain the compleerit.

The numbers may be placed as in Fig. 3.5, or, on some lide rules, one
set, of numbers is to the right of the graduation mark and the comple-

Complementary Angle Scofe (Cosines) PN
\ W |
a0 0 a0 N\ 0 ol )]
;’P i 40 I ¥ OTP Lk
o\

L . oA
S Scale (Sines) www.‘dbr,é"'ulibrary,org,jn
Fig. 3.5. Complementary Angle Marking for Sine Scate
Operation: Set angle A '{n S (comp.); read £ = €08 Ao C
- mentary set is to the left f\itﬁe line. Sometimes the gomplementary
numbers are printed in & d;%’erent color from the direct set.
Examers 3.4A.  Ridd,cos 20°.
Solution.: Set, the heirline to 90° — 20°, or 70° on 5 (or to 20° on the com-
ples eptary scale)
Rqa{i\ﬁ.gél on C, Fig. 3.3
Examprn3.4B. Find cos 85°.
Solutions/Set, the hairline to 00° — 85°, or 5°, on 8T
Read 0.0872 on the C scale, Fig, 3.3
ExamrLe 3.4C.  ¥ind cos 89.4°.

Solution: Set, the hairline to 90° — 89.4°, or 0.6° on ST
Read 0.0105 on C
See Fig, 3.4
Exampig 3.4D. Find cos! 0.11.

Solution,; Set the hairline to 0.11 on C o

Bee Fig. 3.4
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3.5. Cosecants and Secants. The trigonometric identities,
cse 4 = 1/sin 4 (3.0
and
sec A = 1/cos A = 1/sin (90° — 4) {3.8)

suggest the way in which these functions can be read directly from the

slide rule.  Sinee sine and cosine are read on the C scale, their reciprocals

can be found on the C inverted, or CI scale. N
Examrie 3.5A. Find ese 7°. A

Solution: Set the hairline to 7° on 8 N
Read vse 7° on CI as 8.2
ExampLe 3.5B'. Find sec 147, <
Solution: Set the hairline to 90° — 14°, or 76\ o0v8
Read sec 14° on CI scale as 1.03 PN
ExamrLe 3.5C. TFind sec 89°. ‘\
Solution: Set the hairline to 1° on ST
Read sec 89° on CI as 07 3

e AR ARy SR ST ligs Between 0.01 and 0. {; their reciprocals lie
between 100 and 10, hencg-§7.3.

ExameLE 3.5D. F{l@tsec“l 3.15.

Solulion: Set the hairline to 3.15 on CI
1/3.1% appears on C {nearly 0.32)
RBAKEI 71 5° on B (complementary scale)

3.6. Probléms on Sines and Cosines. Find the sines of the foliowing

anglesd _
AN 3A 3B 3C 3D 3E
9, ) a 30° 70° 2.3° 0°40 99°

b 62° 7° 0.62° 13°1¢¢ 137°
c 17° 1.5° 41.3° 37°50¢ 171°
d 57° 18.5° 2720’ 0.3 rad 144°
e 39° 0.22° 0.17° 1.1 rad 275°
f11° 0.45° 0.3° 2.7 rad 307°

Find the smallest positive angle with sine as follows:

{1}

g 0.75 0.23 —0.37 0.37 0.122

h 0.92 005 088 0.22 0.095

! Eixpress angles in this column in radiane,
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34 3B 3C 3D 3E
i1
i0.804  0.082 —0.014 0.85 0.362
i 0.35 0.15 ~0.975 0.11 0.177
k 0.165 0.007 —0.037 (.08 0.255
10264 0.003 —0.077 0.81 0.444
m 0.451  0.0061 —0.81 0.97 0.047
o 0515  0.005 —0.202 0.46 0.015
Find cosines of the following angles: N
28N
o 60° 5.5 77.3° 1.22rad = —20° N
p 69° 86.5° 85.8° 0.087rad  107°% >
q 47° 89° 88.2° 1.55 rad 1:{3"
T 76° 5° 61°107 0.86 rad m{gS&"
8 78° 18° 82°20¢ 0.13 rad \\J191°
t 11° 40° 88°20¢ 1.4 md\\; 347

Find the smallest positive angle with cosine gs}'féllowas:
N%n

w0375 00349 —0423 \029 0.95
v 076  0.057 —0.0262.0" 0.55 0.32
w 0339 0.191 YA fraulibragyoseg.in - 0.087
x 0242 00438 0749  0.0262 0.0122
3.7. Tangents, It is the pna@it}ce on almost sll slide rules to place the

tangent scale on the slide and bo associate it with C and CI scales. This
s true of all but one of thé demmercial slide rules shown in the Appendix,
Figs. 4.1 10 AR, Thesﬁ’ig"onometric seales in Fig, A8 are on the frame,
and hence the tangent’is associated with D, although by aligning the
indices, C may he@sed instead of D. )

The sine sealé tor angles up to 90° often is in two sections, as noted in
Art, 3.3 and Fig. 3.3. The tangent scale, however, for first quadrant
angles is-génerally in four sections. The principle underlying each of
these sevtions i discussed separately and then the re]ation‘ship. of the
Sections i3 shown, Several examples illustrate the use of the different
Sections, :

The construction equation for the principal seetion of the tangent Efcale
* the majority of the selected commercial stide rles, ignoring decimal
Pomt momentarily, is:

log yo = log tan 41 {Ar from 5.71° to 45°) 3.2)

ar

y = tan A
Hﬂ-ﬁ"‘_‘—'———-«__

1 »
Expresy angles in this column in radians.
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The operating statement for equating lengths, as indicated by the sub-
seripts, is:

Set the hairline to angle A (5.71° to 46°) on the T scale

Read the tangent, y, on C (0.1 to 1)

The decimal point position is determined by noting that angles from
5.71° to 45" have tangents from 0.1 to 1.

Two alternate scale arrangements are found on commercial slide rules
for angles from 45° to 84.29°.  Onc of these, represented by Figs 3.6 and

XDr'recf 7 Scole for large Argles .\:\

\45 a0 CED 70 7
T 1 . ] i I10 f | 20I L L 3
T I I i ! dO P F
3 O v
I | | l [ NI BN A I T N
Fig. 8.8. Direct Tangent Scale for An‘g}e& Larger than 45°
A.D, includes a T scale in two parts, 5, 7 \to 45° and 45° to 84.29°, bath

scale sections being associated with thé, O'scale. The other seale Arrange-
ment is based upon the tngonomgﬁzj}c identity

o
=]
?
Lo
L

E XY

www.dbraulibrary.ogg.in — ‘*‘ 1 o 1
4 “tan (00° — A)  cot A 3.9

If the T seals is marked ﬁgith complementary angle numbers, Fig. 3.7, as

:Comp/em ern farg A>§7/e Seole

“Ba PNEL 70 &0 50 45
5 ) 10 20 30 0 a4
TH o \udil | i I I I I I
/ A\“
L7 seake
.\'t % Fig. 3.7 Complementary Angle Marking of Tangent Scale
\s‘xhe S scale of Tig. 3.5, then from Kg. (3. 2} and (3.9)
log yo = log S S—
tan (90° — A4,)
and if
ATr = 900 - AT
log yo = leg ———, L
tan Ay
— log tan A;
or

— log 9o = log tan A (3.1
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gnee the CI scale is eaquivalent to a negative log scale, Eq. (3.10) may be
written, ignoring the decimal point,
log yer = log tan Ar (A 45° to 84.29%) 3.11)

Thus, for angles greater than 45° and less than 84.29°, the angle value
appears on the T' scale as the complementary value of the principal angle,
and the tangent of the ungle is read on the CI scale. The decimal point
range for tangents of angles from 45° to 84.29%is 1 t0 10. The operating

statement. is:

Set the hairline to Ar (46° to 84.29°) on T (Comp) ~
Read tan Ay on CI (1 to 10)
esine. T he{é‘fu?e,

For small angles the tangent is practically equal to th

fora third range of angles, 0.57° to 5.71°, the ST scale in association with
(:may be used for both sine and tangent with an error of less thin 0.5 per
cent, ‘The decimal point range, as noted in Art. 3.3, is 004 to 0.1

For large angles, complements of those from 0.57° toBFl’, ther eciprocal

form, Eq. (3.9), suggests that the reciprocal C sc%lQ\Qr CI scale could be

wed. Therefore: ~\V
Set the hairline to complementary valueS\of A (8429”10 89.43°)
on 8T www.db}"azt.i'libral'y_org_in

Read tan A on CI (10 to 100) 3%
Exampere 3.7A. Find tan 21°. N

Solution: Set the hairline to 213'on T
Read 0.384 on C)Pug. 3.8

Exampry 3.78. Findan 66°.
. AN
Solution: 8ct the hairline to §6° on T (comp}
Read\22246 on CI, Fig. 3.8

"e\ v o
“Jonlig0%20) 68.2 .
W2ty (Dfets” ’ y 5615

Fig. 3.8. Scale Settings for Tangents

3°; 3.7D: tan
1 15; 3.7 tan™! (—0.8]

. a. - {°:
Ii.xamples: 3.7A: tan 21°; 3.7B: tan 66°; 3.7C: tan 88°; 3.7E: fan 164
3.7H: tan—t 0.4; 3.71: tan! 2.5; 8.7K: tan”
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or on & slide rule with direct T scale associated with C

Set the hairline to 66° on T {direct)
Read 2.246 on C

Exsurie 3.7C. Find tan 3°. Solution: The tangent is very closely
equal to the sine for small angles (under 6°). Therefore

Het the hairline to 3° on 8T
Read 0.0524 on C, Fig. 3.8 N

Examrre 3.7D. Find tan 88°, ¢\
Solution: et the hairline to 2° (90°-88°) on 8T )

2

Read 28.6+ on CT, Fig. 3.8 N\

¢4
The order of scales on Fig. 3.8 is not exactly Iik'ésany one of the commer-
cial slide rules shown in the Appendix, but_is'similar to several of them.
In one other respect some of the commeréial slide rules differ from Fig.
3.8. The complementary angle nurpbexy are sometimes printed in red,
or sloped, to contrast with the prindipal values.

ALUB OF TANGENT

www.dbraiffibrary . org.in S
SCALES -[ ¢ X%
5T - . T
Mall 2 057° 8 s
o' 22\ 543
MRS )
DOMP. £ 8996 \\ 47
B9.43" \ 24.79”
SCALES { N BT feorgy T {oomn)
¢/ @ [
By L) ©
£ \ o

VALUE GF TANGENT

“\:¢
Fig. 3.9,\\D1agram of Scales for Reading and Setting Tangents of Angles—Comple-
& mentary T Seale

Operation: Sct angle 4 on the appropriste scale; read y =tan A on C or CI 8
N\ indicated.

Fig. 3.9 shows in diagram form the four sections of tangent scale, and
corresponding decimal point position for a slide rule using complementary
angle scale with CT for angles between 45° and 80.43°,

Tangents of angles greater than 90° may be found by using trige-

non;etric relationships which reduce them to equivalent first quadrant
angles.

Examprre 3.7E. ¥ind tan 160°.
Solution: The identity

tan 4 = — tan (180° — 4) = tan (4 — 180%) (3.11)
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is useful in this example, and
tan 160° = — tan (180° — 160°)

= — tan 20°

1l

8et the hairline to 20° on T _
Read 0.364 on C, or tan 160° = —0.364
See Fig. 3.8
Examerk 3.7F.  Find tan 215°.  Solution: From Eq. (3.11)
tan 215° = fan (215° — 180°)

= tan 35°
Set the hairline te 35° on T \ \)
Read 0.70 on C, or tan 215° = 0.70 N

Examrrs 3.7G.  Find tan 0.4°.  Solution: This angle is..(si:fié‘lle.r than
any readable from the slide rule. However, the angle i;}f(a?dians is very
closely equal to the sine or tangent, and from Eq. (3:3)wpage 89,

tan 0.4° = 0.01745 X 0.4 = 0807
If the tangent of an angle is given, the iny'éi's\e operation can be per-

formed readily. However, the decimal [iic‘bglét positiqn _must be carefully
watched to determine the scale %\g‘gﬁﬁﬁgh AT rehaie, Fig. 3.9

Examern 3.7H. Find tan' 0.4,

Solution: Set hairline to 0.4 on &
Read 21.8° on T, , ()"
See Fig. 3.8 B\

ExawrLe 8.71. Fin\d pan—1 2.5,

Solution: Set the h@i}lfne to 2.5 on CI
Read 682“‘ on T (comp)

or, on a siide‘;fr&lé with direct T scale agsocigted with C

Msjsgﬁ the hairline to 2.6 on C
\ Read 68.2° on T (direct) |
ExamrLe 3.7F. Find tan—' 0.03. Solution: This is in the range of the
ST scale. Therefore

Set the hairline to 0.03 on C
Read 1.72° on 8T

 ExampLe 3.7K.  Find tan—! 15.0.

Solution: Set, the hairline to 15 on CI
Read £6.18° on ST (comp)
Bee Fig. 3.8
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Exampie 3.7L. Tind the smallest positive angle for which an-
(—0.6). Solution: From Eq. (3.11)

tan—! (—0.6} = 180° — tan—1 0.6
Therefore

Bet the hairline to 0.6 on C
Read 31° on T, representing 180° — 31°, or 149°
Sce Fig. 3.8

™\
3.8. Cotangents. The reciprocal relationship between tanpent and
cotangent, Eq. (3.9), makes it possible to modify Fig. 3.9 %0 indicate
settings and readings for cotangents. The C and C1 gegles are inter-

changed, and the limits are reciprocals of the tangent, liits, as shown on
Fig. 3.10. A 2

(v
VALUE OF COTANGENT O\
T i
2 Do
SCALES L = L —
SMALL ¢ G57° s LG
o34 543NN
ANGLES P\
COMP, £ 89°28° sain.
8947 elos
ST toomp} AN  feomy
wwsq\:«fa}ﬁ}[;lﬂljbrary.orgim NV =
ot SN

o VALUE OF COTANGENT

Fig. 3.10. Diagram of Sc“a}i{s for Reading and Setting Cotangents of Angles—
¢ ¢ \J Complementary T Scale

Operation: Set angle {1}n\t-he appropriate seale; read y = cot 4 on CT or C g indi-
O cated .

ExaveLe ?{81 Find cot 40°,

Soauzaon.-\siéé'the hairline to 40° on T
A Read 1.19 on CI

Eximpir 3.8B. Find cot 15°

Sotution: Set. the hairline to 15° on T
Read 3.73 on C1

ExamprLE 3.8C, Find cot 60°.

Solution: Set the hairline to 60° on T (comp)
Read 0.577 on ¢

or, oh a slide rule havin

g direet T scales associated with C for angles
above 45°, like Fig. 3.6 '

Set, the hairline to 60° on T (direct)
Read 0.577 on CI
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Fxamere 3.83D.  Find cot 86°.

Solution: Set the hairline to 4° on 8T (30° — 86°)
Read 0.0699 on C

Tf the cotangent of an angle is given, the inverse operation can be per-
formed readily. I¥owever, the decimal point position roust be carefully
watched to determine the scale for setting and reading.

Exampre 3.8E. Find cot™! 1.5,

Solution: Set Lhe hairline to 1.5 on CI .
Read 33.7° on T D)
'\
Examrir 3.8F.  Find cot™! 0.5. A\
Solution: Set the hairline to 0.5 on C D
Read 63.4° on T (comp) O
ot on & slide Tule with direct T scale associated with ©
Set the hairline to 0.5 on CI x\
Read 63.4° on T (direct) O
Examrire 3.8G. Find COtr_'qugtg.d]?pﬂiﬁibﬁrary,org,jn
Solution: Set the hairline to 20 on CES
Read on ST 2.87°
&
3.9. Problems in Tangents ‘and Cotangents.
Find the tangents of the fellowing angles:
3F &G 3H 31 3]
a14° 500 69.3° 076rad  —20°
N\ o
b 2520 75° 89° 049rad  —17
c 36 32° 86.42° 09rad 147
JAndhe 55° 66°20° 1lrad 127°
ROLESH 67° 55°10° 007rad 2007
f 3.5° 83° 70°50° 0.04rad 342

Find the smallest positive angle with tangent as follows:
@

g 0.625 0306  0.82 0.36. 2.22
h 0.555  0.94 0.65 1.25 0.17
i 1.28 8.77 —~3.08 1.72 0.86
j 0.231 16.4 —0.81 6.68 2.62
k 1.11 928.6 —1.43 —0.38 7.51
11.88 0.132 —4.10 —~0.70 0.08

—_—_—

*Express angles in this column in radians.
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Find the cotangents of the following angles:

3F G 3H 31 a7
m 4°20’ 8°15 0.52 rad 88° 62°
n 1°45 43° 1.2 rad 86°1(/ 68°30°
o 2.6° 22.4° 0.08 rad 82°15 56°
p 6.5° 17° 0.73 rad 81° 74°

Find the smallest positive angle with cotangents as follows: )

&)1

q 1.27 13.5 0.035 0.21 0.46,
r 0.8] 17.3 1.92 1.79 AR028
s 0.36 11.2 1.36 0.06 30
t 0.19 8.7 0.025 13.0 .0 086

3.10. Solution of Oblique Triangles. A planc}r}angle contains three
sides and threc angles; three of these elementS st be known, one being
a side, if the remaining elements are to befgwnd. In the study of trigo-
nometry it is evident that the method{of solution depends upon the
information given. Thig is equally #tue for the slide rule solution of
triangles. o\ o

If the given infermation is twaangles and a side, or two sides and an

Www'dt? rathFary%ll"f{gig opposite: one of them, the law of sines is well

hi i . suited forslide rule solution. Fig. 3.11 and the
equatbion
A B ’g"'(:\

4

i .\N 2 =-—b.__=--i__—-
Plg. 8.11. Snd " snB - amc - (3.12)

General Oblique
Triangle Di O .

mng'e mgrinf‘ ,-Tepresent a general trisngle. If at least one numerator
quantity indig: (3.12} and an associated denominator angle are known,
then th(—‘gi}}tm, R, is established and three of the remaining triangle ele-
ments&an be found, Several examples illustrate the method.

E\me"MPLE 3.10A. Solve the triangle for bye, C,if @ = 50; 4 = 50°
A= 60°.  Solution:

5.09 bn Cn

Sin 50% ~ sn 60% = mmcg = &
Sinee the sum of angles in a plane triangle is 180°, 4 + B 4- ¢ = 180°,
and € = 70°. The various sines could be read from the slide rule, and C
and D scales then used for multiplieation or division to find bande But

. ge 35, is easier. The
operating procedure, as denoted by the subscripts in the equation, is
-

* Express angles in this eolumn in radians, . .
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et the hairline to 5.0 on D

Place 50° on S beneath the hairline
At 60° on 8 read ## = 5.65 on D
AtT70° on S read ¢ = 6.13 on D

See Fig. 3.12
yd
Fig 3.12. Setting for Obligue Triangle r
Problem S5 82 90
5 b . Tttt bl o b vl 1
Hxample 3.10A: n B0 = R G0e = T WI‘ wlmltllljy|'LI|'E|;|'|11' "\s\
o7 / AW
b=565 ScrE/3
This is equivalent to subtraction of lengths on logarithmic saafléé‘,’ solving
R

log Ry = log 5.0p — log sin 50%
= log bp — log sin 60% N
= log ep — log sin 7057

Hf the sine scale is on the frame as in Fig. A.8: m the Appendix, the ratio
could be inverted and the C scale used ingtead of D for the sides.

TxavpLe3.10B. Solve the triangle for; ¢, and Cifa = 9.0; A = 50°;
B =60° Solution: www@}:rrdhlibrary.org.in
9.00 BN e _p
- = -- — = —=r0 D
sin 50% 'sgﬁi{] 2 gin 70%
If 50° on 8 is matched with\g{) on D, reversal of indices is necessary to
read b and ¢ because 60%and 70° on S are beyond the end of D. If folded

seales are available ()
A

Bet the ha%@e’ 10 9.0 on DF

Place 50°0n"S beneath the hairline
At 60°0n' S read b = 10.2 on DF¥
Ab%0%0n 8 read ¢ = 11,06 on DF

Examfre 3.10C. Solve the triangle for b, ¢, and
B =40°, Solution: '

Cifg = 8.7;4 = 30°7;

¢ = 180° - 30° — 40° = 110%

ang

6.7 b c

S0 30° ~ mn 400 s 110° B

Again, the use of folded scales permits the solution for b and ¢ without

Teversal of indices, and since
Sin 110° = sin (180° — 110°) = sin 70°

Q"
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Set the hairline to 6.7 on D¥
Place 30° on 8 beneath the kairline
At 40° on S read b = 8.62 on DF
At 70° on Sread ¢ = 12.6 on DF

Examere 3.10D. Solve the triangle for B, C, and ¢ if a = 8.0;
A =50°b =90 Solution:

8.0 9.0 ¢

sinb0° §n B snl

R ~

There are two possible solutions: B may be an scute or an ébbuse angle.
7NN *

Set the hairline to 80 on D AN

Place 50° on 8 beneath the hairline R
At 9.0 on D read on 8, B = 59.5° RS

or choose the supplementary angle, 120.5° theg .C:may be 70.5° or 9.5°

At 70.5°on S read 9.84 on D \\\

or S 3

"

At95°onSread 17200 D

EXAMPLE' 3.10.  Solve they ’i‘;ﬁafngle for B, ¢, and € it q = 103;
v ghpaglibragy. O Bdution: W\
io_3m? _ 400 _ for B
sin'80%  sin By,  sin G
Folded scales, if avghn\f)le, avoid the necessity for reversing indices, then
as denoted by the subseripts

Set the h\éﬁi?]ine te 103 on DF
* Plage80% on § beneath the hairline
At\{&'bn DF, read B = 225° on §
A$180° — 80° — 22.5°, or 77.5° on 8, read 102 on DF

I, §ﬁ° is the internal angle of the triangle, only one solution for Bis posgible
in/this example; the supplementary angle would require that the sum of
the angles in the triangle be greater than 180°,

If the given triangle elements are two sides and the included angle, only
ene answer is posgible for the remaining side and angles. Howevor, one
of three methods can be used to obtain the solution. The methods are:
the law of cosines, the law of tangents, and an altitude-right triangle
method. Right triangle methods are discussed in Art. 3.11. The other
methods are demonstrated with several examples.

The law of cosines, expressed for finding ¢, is

&= /b 4 ¢ — s eos A (3.13}

After @ is found, the law of sires may be used for obtaining B and C.
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_ Thelaw of tangents, {he alternate method, gives
b +e b -
. C_ =8 (3.14)

an (B0 tanzB =0

may be solved for 8 — 7 sinee
B4+ ¢ = 180° — 4, 01‘%(8-& C) = 90° —%—

interchanged or rotated in

The letters representing sides, @, b, ¢, may be
e is made in the angles ALN

?.@{3.13) or {3 14) if the corresponding chang
Exavrie 3.10F.  Solve the triangle for a, B, and Cif A= 65°,;12j §3>8;
¢=5. Solution: From the law of cosines A

a= 82+52—2X8X5(:0565° \\
— /30 — 80 cos 65° = 743 QO

The slide rule is hardly neceded prior to multiplyirg 80 by cos 65° which,
if the § seale is associated with C, may be doue,as follows:

Set t}m right index of C to 80 on D\
At 65° on 8 (comp) read 33t Qﬂiéuilbra1~y,org,jn

»
) 3

Applying the law of sines

27_‘4'37‘35';&’&-'8"1}' = -5DC =R
s 6.}\g\~.vsm By a&n Ue

or B = 77.5% (f = 37.5¢%

If the law of tangdts is used, Eq. (3.14)

N
) S

\;\11518_@_ _ 8-5 __5
& tan 1125 an -12 (B—0)

§)

g It ispossible to solve this equation for (1 /2)(B — €)inone slide s-ettmg.
ometimes mistakes may be avoided by finding g first, then solving for

the angle from
1 _3

_ ( = 40°, one may check the values of B

Since B 4 ¢ = 115° and B
and ' by using the law of gines. o
; ExawrLe 3.10¢G. Solve the triangle for &, B, and ¢if 4= 1007

=90 =7 Solution: From the law of cosines

___,_._._-—-—-————-—-—'——'_'5
a=\/gz—_|_72-2)<9><7003100

= /130 — 126 cos 100°
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Sinee cos 100° is negative

a = /130 — (=21.9) = 12.32
and
12.32 9 7

gin 100° ~ sin B sin O
From the law of tangents

947 9-7

T tan (/3B =0 3 \

tan 40°
8 =191 and (1/2)(B ~C€) =6° or B~ C = 12°, then) B = 46°;
o N
€ =34 O
Examreie 3.10H. Solve the triangle for o, B, and, O if 4

b=8;¢c=2 Solution: From the law of cosines , /)

a = /B8 < 32cos 30° ~6:36
and _ ’::\\J
6.36 8 N2
=

=

sin 30° sinB," sin C

30°,

Angle B, being opposite the long@s’ﬁéide must be the largest angle, and
vifvihelaretib sy 1 548 1o 180%31ust be obtuse; or B = 141°;, ¢ = 9°
Applying the law of tangenfs
10 & 8
—-—-_n.s.& T eTa———— _—
fan 782~ Tan (1725 = ) = 268
from which B — G 132° and again B = 141°; ¢ = g°,
If the given dabg are three sides, the solution for angles is quite labori-
ous, whether slide rule or other methods are used. An application of the
law of cosines represents one method of solution.

&S The formula for
tangent,if\a;' half angle is another method:

{

N 1

\whiere |
8 = (;—) {a+b+4¢) (3.16)
o ;@E@(—L?&S:._ﬁ (3.17)

Txamewr 3,101, Solve the triangle for 4, B, and C if g = 6 =8;
¢ =19 Solution; From Eq. (3.17)

3=7—_]_-_3._ht_9=12
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And Eq. (3.18)
. \FZ — N2 —8A2 =9 _ /5 - 2236

12

and

1 2.236
tan (;2') 4 = —“5—" = 0.4472

or
A =482°
In s similar manner B = 58.4%; C = 73 4°  If the law of (:osines'is\'u"se

49+ 64—81 32 _2_gos5 N

GOSC:~2X—-_-—-—7X8 = {3 =7 D
and \
C =73.4° X7\

3.11, Solution of Right Triangles.

In thg‘.éj}:»]ications of the slide
rile, to engineering particularly, right t}'iﬁ,’ng’l& problems arise much

more frequently than oblique m%ﬁﬁmﬁlﬁ% as mentioned in Art.
310, some oblique triangle problems. ean Fe “soffsd eonveniently by

erecting an altitude and solving as. tyvo right triangles.

The same general methods of.; “4aclk are appropriate for right triangles
28 for oblique triangles, bu \@tﬁ one angle equal to 90° the calculations
are usually simplified. Retfb'ring to Fig. 3.13, and the .

law of sines, Fiq. (3.12)," A
N g
a b e 4 (3.18) 4 ¢

= b

sin\é:\'._r' sn B _ sm90® 1

. N . ig. 8.18. Gen-
This can be,dised to salve all problems for which the . rﬁ’f lgiight Trl;-

glven @gta’{al';a sides or angles of the right triangle, angle Diagram
although 4" the legs, ¢ and b, areé the given data, the

tangent ‘or cotangent relationship, or the Pythagorean theorem must be
used first, If side a and angle B are known, A ean be found from the

complementary angle relationship

A=90°—B (3.19)

1e marking, a8

If the sine scale of the stide rule carries complementary ang .
n is not necessary; & setting can
al means of

shown in Fig. 3.5, mental subtractio ;
be made on the complementary angle scale as 2 graphie
subtraction.

The following examples illustrate the pr
problems,

ocedure for several typical
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Examrie 3.11A. Solve the right triangle if & = 6; 4 = 40°.  Sol
fton:

6b b Cp

¢in 40°, sn 50°% 1

Using the continued proportion method of Fig. 1.21, page 35, and assum-
ing that the S scale is associated with the C scale, the procedure is

Set the hairhine to 6 on D

Place 40° on 8 beneath the hairline Q|
At 50° onBread b = 7.150n D OV
At 90° (the right index) on S read ¢ = 934 on D o\
See Fig. 3.14 g W

S&L/ )

7

&/

V’J

- ® ]
& NS
ci |i|Tl1r1|§|ir| AARENBAREAAIS Il{‘\}iﬂll]ld
H ? ||'|— Jl]l[l]llél]lxk Pl{!lllllllgfllll {l ||||J|’J||I
o
I\"b 71’5 K c=8.34
www dbraulibrary $ig. fhld. Settmg‘ for “Right Triangle Problem
Exa.mpie 3 UA' -—6'—- = ——b— = ¢

sie 40°  sin 50°

2

Examrre 3.11B. Sﬁive the right triangle if @ = 9; A = 40°. Solu-
ton.:

N

{ i e bor ¢
"/ v wmA = ——— = fnr
) \ ) sin 40%  sin 50%

if e is &e&t\an the D scale for this example, 50° on 8 is off scale, making it

necegsary to reverse indices to read b. If folded scales are available,
th.g problem can be solved in one slide setting as follows:

AN ) Set the hairline to 9 on DF
Place 40° on 8 beneath the hairline
At 50° on 8 read b = 10.73 on DF
At 90" on B read ¢ = 14.0 on DF

The use of folded gcales will not avoid reversing indices for all problems.
Fxample 3.11( is one.

Exameir 3 11C. Solve the right triangle if @ = 3; A = 15°. Selu-
tion:

3 b
sin 15°  @in 75°

=
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Set the hairline to 3 on D

Place 15° on 8 beneath the hairline

At the left index of Sread ¢ = 11.6 on D

Hold this position with the hairline and move slide fo place right
index of 8 at the hairline (11.8)

At 75%on 8 read b = 11.2

Exsmrie 3.11D.  Solve the right triangle if ¢ = 4; B = 32°. Solu-
tion.!
Q
4 b

sin A sin 32°

If the § scale is marked with complementary angle values, subtmc,tlon
of 32° from 90° is not necessary. The operation may be R N

Set the hairline to 4 on D N
Place 32° on § (comp) beneath the hairline '
At 32° on 8(direct) read b = 2.50 on D N

At 90° on Bread ¢ = 472 on D \

Exawrre 3.11E. Solve the right trianglé e ~ 8; a =45 With
the hypotenuse, ¢, known, the .«,hde mﬁle ogemtmn is essentially the same
88 above, but the sequence of settmg 18.C Bryeastigitly.  Solution:

8 A& 5 b
sin 90° \Em A" enB

Set 906° on S to 8 on D

At450nDreadA—342 o
By subtracting fref’90° or reading on the S(comp) scale B = 558 :

At 55.8° onSree\c].b—fiSQonD

Exayery 3. 11{ Solve the right triangle if ¢ =4; A =432
Solution.:

= £

N
O

AN 4 an _ _bo_
P\ DT Sn 43.2%,  sin Bs

Set 90° on S to 4 on D
At 43.2° on S read @ = 274 on D
By subtracting from 90° or reading on 8(comp) B = 46.8
At 468° on S read b = 29200 D
Examere 3.11G. Solve the right triangle if A = 3% ¢ = 6000.
Solution:
a b

6000 = §53° = sin 87°

Set the index of S to 6000 on D
At 3°on 8T read ¢ = 314 on D
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Since sin 87° is hardly readable on the § scale, b cannot be found with
accuracy from this equation. The approximation method of Example
9.10L, page 81, gives much greater accuracy, and

314r
ExampLe 3.11H. Solve the right triangle if a = 9; b=25 The
angles opposite the given sides are not known; so the law of sines cannot
be used directly. Since b/e = tan B, this offers a method for finding
angles A and B. In a form ready for setting on the slide rule

5 _ 9 .
tan BT lc AN
Set the hairline to 5 on D \ O
Place the index of C (45° on T) to 9 on D R

Read on T scale B = 29°; 4 = 61° R4
Move the stide o place 20° on 8 benpith the hairline
Read on D opposite the left index ¢ = 1&3

The latter two steps solve A\
www.dbraulibrary.org.in 5 ¢ ‘t c
sin,2‘£§5~ —1

Examere 3.111. Solve the rlgEt triangle if @ = 7, b = 80. Again,
one solution is: -~
RN S

\\ - tan A
Angle A is too srhall to appear on the T scale, so it may be read very
closely using $0%/ Or,

X, 3 04 T
’\\ c = + 3% 80 = 80.306

&
$‘~

20

and o
4 o\' "3

"\ ™ 30.306 =
\ 3

sin A

from which, on 8T, angle 4 is found to be 5.00°; then B = 85.00°.
ExamrLk 3.11F. Solve the triangle of Fig. 3.15 using right triangles.

Fig. 3.16. Triangle Problem: Given Two Sides and

1» \ Inciuded Angle
r = 5 8

\ h T
E . _ R R
zample 3.11J: 5in 279 22 S 850

A

Solulion:
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The setting is not described, but the results are b = 10.0;7 = 19.6; then
¢ =104, With h and r known, B = 43.8° can be found as in the pre-
eeding examples. The side, p, may be found from

p=vhk+s
= /1007 F 10.4% = 14.43

The law of sines provides a check on these results and
22 1443 _ 30

Gn 188 T sing7°  sin 100.2°
Sometimes a trigonometric function of the angle is known instead, of
theangle. The function may not be the one most convenient for solution
of the triangle. "This introduces one more step info the problefn) and
requires either finding the angle from the function or using ardifterent
method of salution. wels,
Exawpis 3.11K.  Solve the right triangle if cos A =\045; ¢ = 5.0.
Solution.: O
b AN
= 0.4:5 - 5..(] H\s.

N 3

[ =]

NN

or this may be written in the law of sipes fortn’
wiww.dbratilibrary.org.in
bp _ bp a 3 0D
045,  labs sin Ag
Set the right index of the G{3edle to 50o0nD
At 045 on Cread b = 2‘\25’0n D
Also at 0.453 on C read% = 26.8° on B
At 26.8° on 8 (corr{p)d'ea,d a = 4.46
One setting of the-dtide is required for this example.
Exsmreire 3.130) 7 Solve the right triangle if sin A =03; b=6
Sﬂl:“’ﬁm-' Mistalkes are less likely if one gret finds 4 = 17.5° and proceeds
% in Examaplek 3.11B or 3.11D. @ = 1.89; ¢ = 6.29. _
EX§PLE' 3.11M. Solve the right triangle if tan 4 = 0.6; ¢ =3
Solutions From the T and C scales angle A may be found to be 31°, then
proceed s in Example 3.114. b = 4.99; ¢ = 582
Examerr 3.11N. Solve the right triangle it tan A = 1.8; ¢ = Lo
Solution: From the CI and T(comp) scales angle A may be found to be
61°, then proceed as in Example 311F. o = 1746 = 5.37.

15p _ Ao _ [
= Sn61%  sm (900 — 617acm

If a series of values of angle A are

8.12. Trigonometric Equations.
g_“’en and the values of « for

s=ksnd (k= constant)
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are wanted, it is not neccssary to read sin 4 from the scale and then set
it on D or C to perform the multiplication by k. If the sine scale i
associated with C, a setting to angle 4, on 8 or 3T is equivalent to
setting sin A on the C seale. Therefore

Set the index of Cto kon B
Move the hairline to successive values of 4 on S or ST
Read values of x on D

The decimal point posifion of sin 4 must be watched, 0.01 to 0,1 on 5T;
0.1t01on 8. If A hasa single value instead of a series, one qetfmg only
of the hairline on the sine scale is required.

ExampLe 3.12A. Calculate x = 7.5 sin 4 for A = 5?,\ 10°, 15°, 20°.

Soluiton: Set the index of Cto 7.5 on D N
At 5° on ST, 10°, 15°, and 20° on 8 rea.({() 653, 1.30, 1.94, and
2.56 on D

A series of multiplications by cos 4 can belcarried out the same way i

the angle setting is on the complementaty¥numbers of § or ST.
Exampre 3.12B. Caleulate z = 330 cos A for A = 10°, 20°, 30"

Soludion: If folded scales are used, aﬂ values can be obtmned with one

Yaae se%  ATyor &0

Set the index on C to 1, 10 on DF
Af 10°, 20°, and 30%6n S(comp) read 1.083, 1.035, and 0.953 on DF

_

The slide rule of Fig (4. 2, page 183, has an S scale associated with B.
Therefore, the fnreg}nnv examples could be solved on this slide rule using
A and B sca.le&a 4or/multiplication, with settings to the angles on 8.

I the eql’gmﬁ,ibn t0 be solved for several angle values is

\\ : =k tan A (k = constant)

the sﬁme general method of operation is used except that successive
semngs are on the tangent in place of the sine scale. However, this i
s&tlsfactory only for portions of the ra,nge of angle A which are in asso-
tiation with the Cseale. If A exceeds 45°, for example, and tan A would
be read on CI, the multiplication procedure must be changed. As shown
in Chapter 1, multiplication using D and CI (for tan A) is:

Set the haitline to kon D

Place angle 4, if tan A appears on CI, on T (comp.) beneath the
hairline

Read the product, x, on D opposite the index

Examree 3.12C. Caloulate z = 3.9 tan A for-A = 5°, 20°, 40°, 60"
Solution: The tangents of three of these angles appear on C, but if 60° ¢
on T (comp), & separate setting is necessary for that one.
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lengths,
log ¢ == log sin A, 3.1)
log zc = log tan A4 (3.2

from whieh

g = sin Aﬂ
g = tan A.

The solution of triangles requires division or multiplication of\trigo-
nometric functions by lengths of sides; or, by subtracting or adding
lengths on log scales ' ¢\

7'\
log 4y £ logsin Ag = log Rp »

2N
L 3

K9
log Ay & log tan Ax = log 0y

or

In other words any one of the equations N

u L
sin 4 E; or, %‘S.ID’A =R

and ”j"'
a W
=@;oraetan 4 = @

www.dbraulibrary. org.tan 4,

may be directly solved o the slide rule. The subsceripts denote scale
narmes on which readng or setting is commonly made.

2. Recognition of Trigonometric Scales. (Art. 3.1) A sine scale on 2
strange slide rulé/often can be recognized and the method of operation
learned by e);atnihing it for a pair of scales on which 30° matches 0.5, 90°
matches 10y%nd 1° matches sin 1° or 0.01745. Likewise, the tangent
scale a,p\d\\lté method of operation may be determined from the {act that
tan 265" is slightly less than 0.5 and tan 45° is 1.0,

-3 Bcale Graduations.  (Art. 3.2, Figs. 3.1,3.2)  On 10-inch slide rules
the'finest subdivision intervals usually are:

Basic Angle Range

Tangent Sine Finest
Scale Seale Subdivision
0.57°-5.74° . 0.02°
5.71°-10° 5,75°-10° 0.05°
10°-30° 10°-20° 0.1°
30°—45° 20°-30° 0.2°
30°-s0° 0.5°
60°-80° 1°

80°-90° 5°



TRIGONOMETRIC FUNCTIONS AND CALCULATIONS 113

Seales subdivided in minutes are graduated the same as above for angles
preater than 30° on the the sine seale.  For the remainder of the range, the
mterval is 107, 5, 2" or 1 (Fig. 3.2).

§, Operation Procedure for Trigonometric Funciions. (Arts. 3.3, 3.4,
35, 3.7, 3.8; Figs. 33-3.10) The usual procedure for reading sin A or

tan A in the basic range is

Set the hairline to angle, 4, on S, 8T,or T
Read sin 4 or tan Aon C

Ouiside of the basic range, several trigonometric relations are useful

gin (180° — A) =sin 4 3P
fan 90° — 4) = g2 KR
—tan (180° — 4) = tan A T (3.11)
(osines may he read using sine scale and either graphiq’é\otﬁplementary
angle scale or arithmetic subtraction, since 3
(3.6)

cos A = sin (900 - A)':'.\\:

The functions of cosecant, secant, and cotar}géi?} are reciprocals of.sine,
cosine, and tangent, respectively, and hence 48 readable on CI seale if the
latter appear on C. AN

ese A *—i—'—'—' 1 @7

K
v ABraulibrar y.org.in

4 1
o\ = —— (3.8)

\.\SE‘G A= os A
\ . (3.9)
@ cob A = =n A
3. Range of nglééf " (Figs. 3.5, 3.9, 3.10) Decimal point position on
trigonometric ’sc@,l\éé must be used as marked. The usua) ranges of values
readable frpm\he dlide rule are: 0.01 to t for sine and 0.01 to 100 for
tangent, sith other funetions corresponding.  In graphic form for many

com@féia’l slide rules

Seale C C
Sine 0.01 0.1 1]
Angle asre | BaA 90°

Scale ST 8

Seale C ¢ CIor C9) I
Tangent 0.01 0.1 1 10 100

oL O b e

Angle 0.57° 5_\71° 45° 84.29 80,43

Seale Use ST T T(comp)or T¢# ST (comp)’

$¥ig, 3.6, Direct T scale.
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6. Selution of Triangles. (Art. 3.10, 3.11) The continued proportion
form of the law of sines is convenient for slide rule calculations in solving
many triangle problems, both obligue and right angle. (Fig. 3.11)

a _ b e _

sind  snB smC

If given a right triangle (Fig. 3.13} with ¢ = 90°, then Eq. (3.12) is
simplified because sin €' = 1, and E = ¢, Iq. (3.18)

If the given data are such that R is known or can be found from s
given a¢ and A, or b and sin B, or ¢ and C, then a zingle setting of/the slide
and movement of the hairline only will obtain the other elements. In
particular, if the sine scales are on the slide and assouiate;d\'ﬁiﬂl C scale

i (3.12)

Set the hairline on D (or DF) to a, or b, or ¢, whichever is
known ) e \ e

Place the slide with angle 4, or B, or C on S.05.8T matching the
corresponding a, or b, or ¢ ¢

Move the hairline to other known numegrafor terms on D (or DF)
or denominator terms on the slide{ ©

Read answers on the matching gcf;le‘

If sin B is known rather t-ha,n.mi’glé B, set sin B on the ' scale, and
read B on 8 or 81 in passing.  ®%

Independently of the slide'rale, it may be necessary to find one angle
rppdbraulibrary org.in = . "

A A+ B = 1800
or if ¢ = 90° X\
) A+ B =90
Not all triarjﬁ]e problems can be solved by law of sines. (Examples
3.10 F, G:,\H. The more laborious law of cosines

Q 0= F T =T eos A (3.13)
ordaw of tangents
"9 b +e _ b—e
tan (1/2)(B 4 €} tan (1/2)(B — O)
may be required. If three sides are given {(Example 3.10I), solution may
be obtained by the half angle formula.
In right triangle problems and in other calculations (Art. 3.11),
tangent angd eosine definitions
&, b b g
tand ~ Vtan B Y GosAd - S eosB - C

(3.14)

may be solved for one of the terms by the same procedure as outlined for
law of sines.
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7. Trigonometric Equations. (Art. 3.12) It would be possible, by
equating lengths on the appropriate scales, to read Jog sin 4, log cos A,
log sec 4, and so on, from a slide rule. However, these quantities are
very seldom useful in slide rule calculations. More often, sin? 4,
cos® 4, tan® 4, arc useful quantities. Obviously, they can be obtained
by reading sin /1, cos 4, or tan 4 and then squaring the result.

If the 8 scale is associated with C and the slide rule has an A or B scale,
sin® 4 may be read directly.

Set angle 4 on 8 ~
Read sin® 4 on B .
(N

The K, v/ or R, and v/ scales make possible direct rea’dingﬁ of
cubes, square roots, or cube roots of trigonometric fun{,taon,s B,ppeanng
o C.  (8ee Chapter 2.)

Also, it should be apparent that if 1/sin? 4, 1/tan? Ambt 1/ cos A is
wanted, the slide can be withdrawn and mserted inverted as a means of
direct reading on A scale, or 4/~ scale, for a series'of values of angle.

3.14. Prablems on Chapter 3. Solve the fo}lofwing, using a slide rute.

3K L M 3N
a sec 4.5° gee 12°10¢ ..vb;éc' 2.5° ese 9°1¢Y
b gee 18° gec 14°15° 3 ese 27.5° cse 1°207
¢ sec 80° sac 880401\{&?\«’1(1}31;%@115531‘3(.org.in ese 21°4¢/
d sec 1.5° sec 42° i.n-’\' cse 42° ese 62°30°
e seet 13.5 sec—l\ﬁ‘.g cse—! 1.96 ese—! 15.5
f sec—! 2.6 selb8.2 cse! 17.5 cse™! 3.8
g sec1 94 .sec“l 1.15 ese? 37.5 csc—t 4.2
b sec-11.3 '\ Sec™1 3.9 esa 1 8.5 cset 86

Refer to the mg\ triangle dlagra,m, Fig. 3. 13 and solve for the missing
sides and an,ghas

%A:l?" @:52; b:85 e:170; A:25°  b:1i; A:8°
ja:0.46;B:26° a:i3; C:18° c:35; B:19° h:32; B:19°
k 0:088;5:032  a:75: A:20°  a:1.75;b:49  €12.62; Bi4T°
10:1.23;¢:6.24  q:162; B:36°  @:79; ¢:95 :0.06; b:0.00
m 4:56.2; 4:86°  5:03;¢:530 @:8.4; 4:62°  a:0.37;¢:5.2
R ¢:12.6; B:2.5°  5:0.81; 4:7°  a:140; B:56°  a:12; 4:17°
0 b:6.75; B:41°  5:2.6: B:2.5°  b:13; c:65 ¢:820; B:82°
P c:l46; 4:21° c:42; B:13° b:375; ¢: 580 5:9.1; ¢:11

Refer to the general triangle diagram, Fig. 3.11, and solve for the miss-

ing sides and angles.
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3P 3Q

a q:13;0:17; B:40° a:12.7; 6:39; €:95°
b a:9; A:16%; B:75° a:914; B:16°; (':49°
¢ b:2.5; B: 82° C:18° b:65; 4:9.5°% C:120°
d 5:125; e:47; B:32° a:370; b:40; C:71°

e a:52; ¢:95; A:4° b:21;¢:18; A:45°

f h:76; ¢c:82; B:65° b:460; A4:29°; C:62°
g a:42; 4: 15° (:45° b:59; A:35°; B:97°
h b:11; ¢:7.5; €:17° 0162A16°361°

ia:80;5:90; cos 4:0.65 a:16; b:45; tan6075
j b:15: ¢:42; tan €:1.10 blgclﬁcosBOIS
k ¢:42; cos B:0.52; €:90° a:4.8;c: 75 cos B:0.05
1 ¢:19; tan B:0.37; sin (":0.85 a:6.2; j;,a\nA 0.07; ¢:90°

Bolve the following with minimum possible slide movement :

3R 38 L 3T
] S,
a sin® 16° cos? 47° 2\ tan® 25°
b sin? 70° cos? 622 ™ tan® 67°
¢ 1/5in? 9° 1/cos® 9r° 1/tan? 18°
d 1/sin? 55° 1/003* §2° 1/tan? 50°
wwrw.dbgaull gn \/00:3 19° +/tan 40°
f 4/sin 4° ~\ 4/cos 15° +tan 77°
g sin? 19.5 \\ cos? 50° tan® 61°
h sin® 63° A cos® 21° tan3 4°
If angle A 1%5", 20“, 40°, 60°, 75°, 85° calculate the following:
. OO
i 85 5in A 14.2 cos 4 T tan A
&s.. . 18
ANT38sind 092 cos A . 47 tan 4
NS "k 19.6/sin A 48/cos 4 136/tan A
<\; “ 1 390/sin A 1.3/cos 4 62/tan A

Calculate the following for values of 4 from 0° to 360° in 30° steps and
plot on polar coordinate paper:

mRE=7siny  R=35 snd R=35cosa
n k=35 sin% R =7Tsn2d B =35 sin%
oA '
0 R = 7sin T R =358sin? 4 R = 0.1 (radians)

o4
pR=T sin - B=7cos? 4 B = 0.56 (radians}
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41. Exponents and Logarithms P;inifj’plés. Qeveral properties of
; perations of this chayp-

exponents are fundamental to the math’eﬁm-tical 0
'_ ,ter' One may refer to a book og‘éil‘ééggjfé? PHPHaoP o these relationships.
The correctness of the formulas-hay be verified by substituting simple
f symbols in Egs. (4.1)

mmbers such as 2, 3, 4, 5, 01’\@6'1‘ the various letter

to (4.6).
= o (1)
,\:;\:‘hg; =g ify =0 é—; =g . {4.2)
A @ = (4.3)
(4.4)

QY ve=emiy=1Vesor
C(?rtajn factoring operations, Eq. (4.5) and (4.6), in which exponents
arise also are useful in some problems.

It c=aXb
then

¢ = (ab)’=a¢b”;x“f=\77«5=\7&'><% (4.5)

It Q=
117

o=
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then )
#= () - Fva- \[

The exponents, = and y, may be positive or negative, whole numbhers,
fractions, or decimal numbers,

A general definition of a logarithm and some of its properties also is
important to this chapter. If

(4.6)

M =b O\
and A
N =0 N e
then by definition of a logarithm (“3}: -
z = logs M R4 (4.7)
y =log N \% (4.8)

where b is ealled the base of Ioga.rithmsl\‘\\f[n principle b may be any
number, but in practice two values andys are used, 10 and e, where e is

271828 - - - . Logarithms to the ‘bafse 10 are called common loga-
rithms, and to the hase ¢ are called natural logarithma.
¥rom Eq. (4.1}, if .,j.:‘;
www . dbr aulllbral y,or&jn_ M.;&"N = b X b = b=+
logf.{P =logp (M XN)=z+y (4.9
and if \\
N
,\'.f" G-~ E"
or xj\"'
O N
(\ log, @ = log (H) =y -z (4.10)

mAI‘so from Eq. (4.8) if

V

then

R = M* = b (4.11)

logs B = loge M* = ke = k logs M (4.12)

where & may be positive, negative, whole number, fraction, or decimal
number.

Chapter 1 is concerned with the solution of Wes. (4.9) and (4.10) by
addition and subtraction on log scales with base, b, equal to 10. Exten-
sion to more than two guantities also is a part of Chapter 1. A major
part of Chapter 2 is devoted to the solution of Eq. (4.11) or {(4.12) by
equating slide rule lengths for & equal {0 1/3, 1/2, 2, or 3. Thischapter
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' deals with the use of the slide rule in the solution of these equations for &
having any value.
From the form of Eq. (4.11) it may appear that R is the quantity
sought. 'This is not always the case. One may wish to determine %, or
¥, or z, all of the terms but one being known.
If a table of logarithms is available, as it is in graphic form on nearly
sl commercial slide rules, Eq. (4.12) can be solved by using the full-length
log seales of the slide rule for any multiplications or divisions by &, Art.
44 Or,if Iiq. (4.12) is written QY

log (logy B) = log k + log (log. M) (443}

itis in a form for solution with the LogLog slide rule, Arts. 4.8 and 4.9,

The sequence and content of topics throughout the booku Hawe been
determined partly in a manner which places the most yidely useful
material first, and also introduces the simple scale drtangement or
method before discussing the more complex. Consequently, the use of
the L seale is presented in the next several articles prégeding the discussion
o LogLog scales and their uses. )

42. The Log Scale and Logarithms of (Ntmbers. A uniformly
mraduated scale, usually marked L, and gqtiletimes placed on the slide,
o be used along with C or D scales b0 find logarithms te base 10.
~ Among the eight commercial slidﬁm&kﬁ-&hﬁﬁiﬂriﬂo%rﬁppeﬂdixr Figs.
41t0 A8, an L scale is on the fffme of five, and on the slide of three
(Figs. 4.1, A5, and A6). ¢\

_The introduction to log scales’in Chapter 1, Fig. 1.4, shows the prin-
tiple and relationship of the'l scale to C and D scales. In equation form

(4.14)

\.:1‘ ' Lo =log My
"epresents by thw{é‘l;lbscript.s the scales on which the logarithm, L, or
a,nt1~logarithm,‘.Ml, are found.

In general ghly the mantissa of the logarithm iz read from the L scale,

bu Fig 4L khows that it would be possible to obtain the logarithmic
charactenigtic if the D seale were extended.

T T T T 11} H i
1

IJTHIIIIIIIlI1Irllllilllill|.|'a
_ & )

Fig. a1, Model of Slide Rule for Reading Logarithm Complete wlth Characteristic
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A portion of the L seale and D scale, fully graduated, are shown in
Fig. 4.2 and several examples are illustrated thereon. The finest L scale
graduation interval on 10-inch slide rules generally is 0.002,

\\ .
TJ’Z6 lrf.38 r00155 rf?rs F.aﬁ ‘i
I N

p { T T | AN

co T ")’"'/'/é""""é""[’.;'“5""""}

Lol rao} Ziao| Lo ,\:t Zsos '
©©® 0 & @

Fig. 4.3. Scale Settings for Loganthm} and Antilogarithms

Examples: 4.2A:log 2.50; 4.2B:log 178y 4§O log 12.6; 4.2D:log 0.00155;
4.28: antllog 0,140

ExamrLr 4.2A. Find log 2@& ’

wealutien Setuthehginline to-250 on D
Read 0.398 on L
. Bee Fig. 4.2 o~ \

ExamreLE 4. 2B }ind log 178.

Solution: Set 1:h‘e haarhne to 178 on D
Réhd the mantissa, 0.250, on L

The l@lthmlc characteristic, equal to the correction number as used
in Chapter 1, is 2; therefore, log 178 = 2.250. See Fig. 4.2.
EXAMPLE 4 2C. TFind log 12.6.

Solut@on. Set the hairline to 12.6 on D
Read the mantissa, 0.100, on L

The characteristic is 1; therefore, log 12.6 = 1.100. See Tig. 4.2.
ExavrLe 4.2D. I‘md log 0. 00155

Solution: Set the hairline to 0.00153 on D
Read the mantissa, 0. 190, on L .
See Fig. 4.2

The characteristic is —3, and the answer may be written several different
ways:
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3.190 meaning —3 4- 0.130
7.190 — 10
—~2.810

For subsequent slide rule caleulations the last form is usually preferable.
Except for the 2, it can be read directly from the slide rule.

Set 0.00155 on CI
Read —0810 on I, ~

Examerr 4.2E.  Find antilog 0.140. AN

Solution: Set the hairline to 0.140 on L
Read 1.38 on D ~‘
See Fig. 4.2 Mf\‘

Since the characteristic is zero, the decimal pomt{o]lows the firat digit.

ExampLE 4.2F. Find antilog 1.740. \

Solution: Set the hairline to the mantissa, 0 740 on L
Read 5.50 on D ’~“

~

The characteristic is 1, and the declmal pomt position, therefore, is 55.0.
Examrrr 4.2G. Fmd antﬂog @iy aulifgyary org.in

Solution: Set the hairline to 30.320 on L
Read 8.32 on D\\ )

The characteristic i ig & 2 the answer iz 0.0832.
Exampir 4.2, ,\Fmd ‘antilog —1.650.

Selution: Set ,&—\hau]me to 0.650 on T,
Read .24 on CI, aligned with D

Since "ﬂh& gwen number is equivalent to 8,350 — 10, the characteristic
is -—é,\afnd the decimal point position is at 0.0224,
Examrere 4.21,  Find antilog 3.69.

Solution: Set the hairline to 0.69 on L
Read 4.90 on D

Or since the characteristic is —3, the answer is 0.00490.
Exawurir 4.27. Find In* 2.86.
The general relationship between logarithms to the base ¢ and loga-

rithms to the base 10 for any number, S, is:

! This is & common method for writing logs to the base e to distinguish them from
"0gs 1o the bage 10, oeeurring in the preceding examples.
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_logn 8
log, § = o2 (4.15)
or sinee logoe = 0.4343 - - -
In S =—1 log8 = 2303 log 8 (4.16)

0.4343
For the particular example, using D and L scales
log 2.86 = (1.455
and using C and D scales for multiplication
In 2.86 = 2.303 X 0.455 = 1.056 o\~
Examrie 42K. Find In 38.0. N
Solution: Set the hairline to 38.0 on D '\‘
Read the mantissa, 0.58, on L ’
or ,xt\\';
log 38.0 =~.1;\'38
and using C and D scales \ O

In 380 = 2803 X 1.58 = 3.64
ww‘EHhMHMAa.ﬂLoI gRind ln 0{}36

Solution: Set the halr];g@@u 0.036 on CT aligned with D
Read -0 4{3.&1 L

or
ln 0036 = —1.443 X 2.303 = —-3.32

</

EXAMPLE\% 2M. Find antiln 13.7.

Solutw%‘l‘f 137 = In S, then log § = 13.7/2.303 = 5.95
) Set the hairline to 0.95 on L
NS +5
\:}“ Read 8.92 on D

Antiln 13.7 = 8.02 % 105
Examrie 42N, Find antiln —2.60.

Solution: Antiln —2.60 = antilog (—2.60/2.303)

= antilog (—1.13)
Set the hairline f0 0.13 on L

Read on CI aligned with D, 7.42
or since —1,13 = 887 — 10

Antiln —2.60 = 0.0742
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4.3. Problems in Logarithms.

4A 4B 4C iD

Find logarithms to the base 10 for the following numbers.

a 2.20 0.640 2710 0.0062
b 7.35 0.076 750 0.215
c 188 0.0292 a5 0.041
d 845 0.091 8300 0.003

Find antilogarithms (base 10) for the following

e 0260 917 —10 3.053 242 R\

f0736 —1.28 1.44 1.037 \

g 1938  —0.36 2.76 356 N

h 2.82 72510 433 0295 (D
Find logarithms to the base e for the following numbars, ’

i 140 0082 5300 /D364

i370  0.0065 154Q5\M0.111

k 560 0.93 628()" 0.007

182 0.014 lwes 066
Find antilogarithms (base e) forWé“’fﬂH‘é"{)ﬁ'fHE'”y‘m'g‘in

m 320  —1.620\ 1085 1275

n 0.82 — 256 7.41 —3.06

0 0.174 %0821 9.86 —0.040

p 186  N7.30 0.93 —0.195

4.4. Powers and Robts of Numbers. If Eq. {4,12) is written
I
\} (log R)p = kc(log M)n

t{ﬂe subscripts ’df}]ote the scales on which reading or setting of the quan-
Uties may ha-made in raising M to any power, k. The quantity, log M,
may b“\flﬁﬁma on the L scale, or at least the mantissa for it is read from
L. Sim} arly, it R is being sought, its mantissa is set on L.

% or M is the unknown, an inverse operation is required, but the same
Scales are vsed for the several terms.
. Slide rule methods for solving typical problems in powers and roots are
Hlustrated by several examples. The examples have been chosen to
Show positive and negative exponents, and numbers smaller than 1 as
el as numbers larger than 1.

Exsupir 444, Find B = 2517, Solution: From the fundamental
Property of logarithms, Art. 4.1, it is evident that

log B = 1.7 log 2.5
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and from Example 4,24, log 2.5 = 0.398. Using C and D scales for the
multiplication
log R = 1.7 X 0.398 = 0.677

To find B = antilog 0.677

Set the hairline to 0.677 on L
BRead R = 4.75 on I

Exampie 4.4B. Find E = 17807, Solution: log R = 0.72(lpg 178).
From Example 4.2B, log 178 = 2.250, and using C and D scales for

multiplication SO\
K
log R = 0.72 X 2.250 = 1.62 | ™
To find R = antilog 1.62 D’
" N

Set the hairline to the mantissa, 0.62, on\nY
Read 4.17 on D, representing 41.7 AN

Exampiz 44C. Find R = 1/32.08%" Solution: Since 1/12.6 =
12,6714 OF

— L4(1%¢ 12.6)

= —14>< 1100 = —1.54

log K

www.dbraulibrary.org.in

Antilog {—1.54) may be ;Eound by using the inverted scale

Set the hairlin t\l}’ 54onL
Read 2.88 on C .

Like Examplé¢ 4}.2(}, the logarithmic characteristic is —2, and the decimal
poiut position)’R = 0.0288.
EXAM{LE 44D. Find R = X7800. Solution: From Eq. (1.4)

Ny log R = log 800 = ﬂ 2.903 = 1.320
antilog 1.32 = 20.9
Examrern 4.4E, Find B = 0.0015535.  Solution:
log B = 1.6(log 0.00155)

and from Example 4.2D, log 0.00155 is 7.19 — 10, or 3.19, or —2.8L.
© Multiplication is easier if the latter form is used and

log B = 1.6(—2.81) = —4.50, or 550 — 10

]
antilog (5.50 — 10) = 3.18
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If the multiplication is carried to one more decimal place of accui‘acy by
—5
the methods of Art. 1.15, the answer is 3.175.
Exampie 4.4F. Find B = 0.080-12% Solufion:
log B = —1.2(log 0.080)

However, since log 0.080 is negative, log R is a positive quantity. Fewer
mistakes are likely to result if it is written

1.2
R = 0.080-12 = (J—) = 19512

0.08 .
O
then ~N\
log B = 1.2(log 12.5) N
=1 096 = 1.3
1.2 X 1.096 15 ~AV
frem which v
Y,
R = 20.65 \x\\
Exampiw 44G. Find kif 76 = 25. Solufiin?
klog7 = log 26"
or wwxg.:cil‘kr‘aulibrary_org_in
log 250 1.398
o= - = —F = L. 5
k lo'gi_\ 0.847 1.6
Exanmrre 4 4H. Find % ﬁ\§20" = 0.0026. Solution:
2k log 320 = log 0.0026
or \
:“\:s.
\}_ log 0.0026 _ 7.415 — 10 _ —2.585 .
R\ ~ log 320  2.503 2.505
= —1.032
\ 3

Exameie 4.4I. Find R = 5%%———% Solution: The caleulation for this

ample may he shortened if, in accordance with Eq. {4.6),

280 \*°
={=Y) = 0056
R (5000) 7

it is written

then

log R = 5.2(log 0.056)
= 5.2(0.748 — 2) = 5.2(—1.252)
= —§.51 =349 — 10



126 THE BASIC SLIDE RULE PRINCIPLE

and _
R =309 %107

Examrrr 44J. Find B = 17%* X 622 Solution: For a product of
quantities, the logs are added, Eq. (4.1)

log B = 0.4(log 17) + L3(log )
=04 X123+ 13 X 0778
= 0.492 4+ 1.011 = 1.503

N\
then A
' (NN
R=318 O
. 7542 N
Exavrin 44K, Find R = 15216 Solution: TheMog of the denomi-

nator term is subtracted, Eq. (4.2), and \ '

log B = 4.2(log 75) — 2:i8(log 15)
= 4.2 X 18752116 X 1.176
= 7.875 — 2540 = 5.335

®
from which )
www.dbraulibrary org.in \

B=2.16 X 105
4.6. Problems in P?"wérs and Roots. Caleulate the following:
3

g 8 g 4G 4H
a 3w O o 15 17-3
b 4.55%/ 0.865%7 X/76 7002
¢ 500° 0.491° /537 625011
..:&,.452‘5 0.2814 V26 220
A8 e 1.5%7 0.9824.21 /165 2400~0-015
~O Lo 0.7759 /02 0.96—5
\/ g 1.02588 0.31452 VLI 0.17-0.052
h 2200 0.871L5 Y5000 0.076—2
i 1600%0022 () pOgoots 8202 1.19~36
§j 8708 (0. 127 v.07 {5/:'36 1.59-022
k 17003 0.910.%7 /87000 58001
1 1.006v%037 0.001 5002 m 1,800,000--035
m 4.72.4 3‘958.1 15.2—1.2 —2.3
n 3,51 13,212 75028 208%*“-?
o 1_750.36 4_'250.15 1_27—0‘085 4:82—0‘31

p 1201 7,304 213~ 7.35-0i
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4.6. Principle and Arrangement of Loglog Scales. Distances along
the C and D scales are proportional to the logarithms of the numbers
marked on the scale. In like manner, distances along the LogLog scales
are proportional to logarithms of the logarithms of the numbers marked
onthe LL scales. The LoglLog scales ecould have any number as base, but
since only 10 and e are customary bases, one or both of these are used in
practice. The particular commercial slide rules in the Appendix, Figs.
A3 to A8, have been selected partly because they represent several
different, ways of making and marking LogLog scales.

The form of construction equation for a number of these commercial.
slide rules, Figs. A.3, A.4, A.6, A.7, A.8, Is a mixture of base 10 and base's

o
Ly = 10g In My N ré
and for Fig. A.5 it 1s base 10 throughout (‘«'.;. .
Ly = log log My, M'\‘\'
The subscripts, as elsewhere in the book, represent sodlés for setting or
reading. NV
Consequently ~\

Set the hairline to M on LogLog scale,
Read on L scale L = log In M, or &\= log fog M (except for
log characteristic) wW\.\f,dl;i'"éuljbrary.org.in
The value of loglog M or log In M is very seldom of any practical use.
Ii, instead of reading on L, lengths are equated on D and the LogLog
seales the equation solved IK\‘ wt :

..Ziog yD = log ]_n MLL

or P \
0\
\::\'" yo = In My, (4.17)
and O\ .
N \ .\': ' log Ho = IDg log _ﬂ_’fLL
AN )|
(4.18)

yn = log My
The Operating statements are
Set the hairline to the number, M, on LL
Read Y¥» = In My, on D (Figs. A3, A4, A6, AT, A8)
Read ¥o = log M,; on D (Fig. A.B)
Figs. 4.3, 44, and 4.5 show for the several commercial slide rules the

Ug_L.og scale points of fold and seale designation as well as decimal point
Position anq relationship to the full-length log scales.
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Fig. 4.3 Diagram of Scale Designations and Fold Points for Lo‘gLug Scales on
Selected Commercial Slide Rules %
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Fig. 4.4 Diagram Showing Fold Pomts for Loglog Scales on Deci-LogLog Slide
AN\, rule, Fig. AB
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Fig. 45, Diagrtam Showing Fold Points and Scale Associations for LogLog Scales
on LogLog Trig Slide Rule, Fig. A8

The LogLog scales are placed on the frame and are generally associated
with the D scale, but the slide rule of Fig. A.8 has a portion of its LogLog
scale associated with the A scale, Fig. 4.5.

The finest LogLog graduation interval, as on the other slide rule scales,
is 1, 2, or 5 times 0.01, 0.001, 0.0001 for the small number range, or times
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10, 100, and so § orth on the large number portion of the seale. Through-
ont most of its range the Loglog scale is more ‘“‘non-uniform’ than the
log o trig scales, and consequently the subdivision interval changes many
times.

An interesting property of the LogLog scales shown diagrammatically
in Figs. 4.4 and 4.6 is that reciprocals complete with decimal point ean
be read ; for example, by setting on LL3 and reading on L103.

47. Logarithms of Numbers by LogLog Scales. The I along with
Cand D scales enable one to find logs of any number to base 10 or e, as
shown in Art. 4.2. The LogLog scale is no better for the purpose except \
in the range of numbers from about 0.4 to 2.5, in which interval greager

“accuracy of reading is possible, This greater accuracy of reading ispar
tieularly evident near 1. Above 4 and below 0.25 the LogLog\s¢ale is
noticeably less accurate. The theoretical points of equal a,cizui‘acy by
both methods are at e, (2.718), and 1/e, (0.368). S

Like the trigonometric scales, these scales must be vead as marked;
shifting the decimal point in numbers on the LogLog Seales is incorrect.
The range of numbers on the commercial Loglog scales is satisfactory
for most practical applications, but special méthods may be needed to
obtain an answer for very large or very's,rﬁail numbers, or to attain
desired ACCUTACY. RN W )

As shown by Hgs. (4.17) and. {APhnage, %, ifome commercial
LogLog scales are coustructed to read’}dgarit-hms to base 10 in association
with the D seale, whereas others{give logarithms to base ¢ in association
with the D scale. The constant ratio between logs to the two bases, Eq.
(4.16), makes it possible tass}ttgt the slide by the constant ratio and read
to another hase on thevor CF scale as shown by some of the later
examples, 4,7K and 475, .

Settings for Sevel‘a} “examples are tabulated for gonvenience in com-

paring them., .§~

Example 3" Problem Seales Anawer
pad o) Set on Rezd on
174/ ln 15,000  LL3, LLs D 9.62
N DF/H
478 In1.152  LL2 LLs D 0.1415
Ng DFK]{
4.7C ln1.0375 LLL,LL: D 0.0368
. Ng DF/‘M
47D In1.008  LLO (Versalog) D 0.00300
N: DF/u

. These examples are on various sections of the LL S(:,ales, anﬁl tI},lIe
decimal point positions of the answers also differ according to t 0?)3 -
Scale on which setting is made, Fig. 4.4. For Example 47D, L 1s
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below the scale limit of several of the commercial slide rules, but for
numbers near 1, a very close approximation is:

mV=V¥V-—-1 (V:0.99to1.01) (4.19)

At the extreme limits, 0.99 and 1.01, the error is one-half of 1 per eent;
nearer 1 it is much less.

The LogLog scales of the Model 2 slide rule, Fig. A.5, having scales
marked N,, 1/N,, ete., ave based upon

logo logie Mix '\

Therefore, to find In M, it is necessary to multiply log M bj?“z 303, Eq,
{4.16). The scales DF/y and CF/x are folded at 2. 303 Yand setting on
any one of the scales N4, N3, N, Ny, and reading on DF /% accomplishes
this multiplication without the use of the slide. ,The range of numbers
and logarithms is: “\

Set on Ny; Read In M on DE/y, 2.3 $0)23

Set on Ny; Read In M on DF/y, 0.23 %0 2.3

Set on N3; Read In M on DF /w023 to 0.23
Set on N;; Read In M on DE/M, 0.0023 to 0,023

WWW§%1 -aull Ei;%a?%?or Fﬂld I 60:'000 using LogLog scales.

Solution: This number iy out of range on some of the commercial slide
rules, but \

\\ 4 X 15,000 = 60,000

and o g

0o In 4 -+ In 15,000 = In 60,000

v/
7%

In 60,000 = 1.385 + 9.62 = 11.105
It can be read directly without factoring from DF /, scale

Set hairline to 60,000 on N,
Read 11.30 on DF/

In the equations defining a logarithm
M=tz =log M (4.7)

M can be less than t only if x is negative. In other words, the logarithms
of numbers less than 1 are negative regardless of the base. Several

examples of logarithms for numbers less than I and the commercial shide
rule settings are:



LOGARITHMIC AND EXPONENTIAL CALCULATIONS 131

Example Problem Beales Answer
Set on Read on

4.7F ln ©.9846 LL0} b —0.015
LL/1 D
1/N, DF/x

4.7G In 0.856 LLO2 D ~-0.i44
1L/2 D
Li4i (Fig. A.8) A
1/N; DF/u

4,70 In 0.262 1103 D —1.34. O\
LL/3 D A
LLO (Fig. A8} A o\..\

4.71 In 0.998 LLO (Fig. A7} D ,—{l 002

As for Example 4.7D, a slide rule is not needed to obtai ]n 0. 008; see
Eq. (4.19). ) "

Exampre 4.77F. I’md In 107,  Solution: This cat\beéread from DF /y
i set on 1/N, Or, because log 107 = —7, Ahe?2.303 relationship
between logs to base 10 and base ¢ enables one%\o calenlate it,

In 10-7 = 2.303(— 7) (276.12

Logarithms to base 10 can be read a,s readﬂy as logarithms to base ¢
using LogLog scales. FATATS dbl raulibrary.org.in
Exampre 4.7K. Find log 250uung LogLog scales,

Solution: Set the hairline to ,lﬁ\n LIL3 or Ll
Place 1 on CF beneath the hairline
At 250 on LL3 read 2.40 on CF

Using D and L scales &nd determining the characteristic independent of
the slide rule, ond anore decimal place is obtainable, or 2.398. I the
CF scale is usec%qs described rather than C, a wider range of numbers and
their logs is Ieadable without moving the slide.

EXAMI—'LE 4.71. Find log 1.0182 using LogLog scales.

Solutub&. MWith the same slide setting as for Example 4.7K
At 1.0182 on LI1 or LL; read 0.00783 on CF

Using D and L scales, Art. 4.2, one digit only is readable, 0.008.

Examples of antilogarithms using LogLog scales are not included; the
reader may profitably use the examples and problems of Art. 4.3 for
practice,

4.8. Powers and Roots of Numbers Using LogLog Scales. The two-
variable mathematical relationships solved by slide rule require equating
lengths, Relationships involving three variables require addltl()fl or
Subtraction of lengths on the appropriate seales. And the three-variable
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equation
R =M (4.11)
in the form
log (logs R) = log (logy M) + log & - (4.18)
LL LL C

indicates the addition, and by the letters below the equatioln, shows the
scales of the slide rule commonly used for the operation. Fig{%6 shows

'\\
P ferg K% 'm} :
¢ | \ ! S S T I 2

£
Log Log AL
K LG LT TIN@ T T

-Log Log Af—

R

Lag Lag /?»—-':————-1
wWw'dbrau%'fgl':ai%lorﬁfﬁciple of' i.ogiog Scales for Powers of Numbers

Logldg\R = Log K + LogLog M; or
7\ Log B = K (Log M)

or \<
N\ R =M

the method of\ operation graphically. The particular sections of thf*
LogLog scalés depend upon the numerical values involved. Also, if
log % isnbgative, the operation becomes a subtraction. .
Ag ';fls}urt-her general observation about Eq. (4.13) and its solution, it .
makes no difference whether base, b, is 10 on,e. For Fig. A.5 it is 10; for
_the other selected cominereial shde rules it is e.
The operating statement, is:

Set the hairline to M on the LogLog scale
Place the index of C beneath the hairline
AtkonCread R = M* on LL

The CI scale may be used in place of C if the operation is correspond-
ingly modified, just as is the ease in division or multiplication

Set the hairline to M on the LogLog scale
Place k on CI beneath the hairline
- At the index of CI read R = M on LL
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This method has the same advantage as multiplication using CI and D;
no decision is necessary regarding right or left index on the slide; use
whichever one is within the frame. However, for introductory purposes
adding & length, log k, using the C scales seems less likely to lead to error;
the examples, therefore, deseribe C scaleuse.  The decimal point position
and the sign of k determine whether the answer is read on the same section
or a different section of the LogLog scales. Several examples illustrate
these matiers. .
ExampLe 4.8A. Caleulate 312 using LogLog scales.

Solution: Set the hairline to 8 on LL3, LL;, or N

Place the index of C beneath the hairline O\
At 1.2 on C read 3.74 on the same seetion of LL sc&leg.:\
See Fig. 4.7 ~\

vk, dhimtlibras
i 1] | | I:j IL\ILI3I H |]l| ||{II||||HI|IIKI|I||I]HIIlI illllllrlilll

LL3

L 3

N\ \-3.74

Fig. 4.7 Seale Setting for Number Raised to Power
.\’ ? Example 4.84: 312 = 3.74
N\
ExavrLE 4\.§B: Caleulate 3212
"\

Solution: Se1; the hairline to 3 on LL3, LLs, or N
~(Place the index of C beneath the hairline
U A4 0.12 on C read 1.141 on LL2, LI, or N>

For k = 0.12, log k is negative, one full log cycle less than log 1.2, hence
the answer is read on the next lower seetion of the LogLog scales, Figs.
43 and 4.4,

Examere 4.8C.  Calculate 3%

Solution: Set the hairline to 3 on LL3, LLs, or Ns
Place the index of C beneath the hairline
At 0.012 on C read 1.0133 on LL1, LLy, or Ny

In this example log & is 2 cycles less than log 1.2. If the problem were
300012 the answer would be very close to 1, and less than 1.01, This is
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below the range of Loglog scale on most of the commercial slide ryles,
but usually either 1 or 1.01 is accurate enough,
ExamrrE 4.8D, Calculate 312 using LoglLog scales,

Solution: Set the hairline to 3 on N 2
Place the index of C beneath the hairline
At 12 on C read 5.3 X 10° on N,

The answer to this problem is beyend the range of 1.L3 and LL; scales.
However, if factored into 3% X 3%, one can read 3% = 730 from ‘BL3, and
square it by one of the methods described in Chapter 2,
Examere 4.8E.  Calculate 0.9%%, R\ \J)
Sobution: Set the hairline t0 0.9 on LL0Z, LL/2, LLy, 1/N,
Place the index of C heneath the hairlinen™
At 1.32 on C read 0.87 on the same soebion of LL scales

See Fig. 4.8
.=’.\\' 0.87

R ) ‘ \\‘\
in flj{."mﬁ|[|!4rf:1|ufl|;'raﬁ|uhll:\n

www.dbraulibrary.or
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Ke f.32\

C1
i|||J|||J|ru||!uuﬁn:]:mﬁmlllnn_

¢
O
."\‘~

z\%g. 4.8, Scale Setting for Number Less than 1 Raised to Power

T,

N Example 4.8E: 0,901 — 0.87

\Using a slide rule such as Fig. A8 on which LogLog seales for numbers
less than 1 are in association with B, the above operation is correct if C
scale is replaced by B scale.

ExampLE 4.8F. Casleulate 0.9o.1s2, Solution: The decimal point shift
from 1.32 in Example 4.8T t0 0.132 indicates that the expouent is one full
cycle helow 1.32 on C, or the answer is road on LLO1, LL/1, LL,, or 1/Nx
for the several commercial slide rules, or is 0.9862.

Exawmris 4.8G.  Caleulate 0.952 Solution. The answer is one cycle

of C in the opposite direction from Example 4.8F, or is 0.249 read on
LLOS, LL/3, LLs, Qr ]./Na

Examern 48H. Calculate 5-3 using LogLog scales.
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Solution: Set the hairline to 5 on LL3, ete.
Place the index of C beneath the hairline
At 3 on C read 3% on LL3 {as 125)

or
1/5* appears on 1.L03 as 0.003

Similarly, a number on LLO1, LL02, or LLO03 raised to a negative power
will have the answer on the reciprocal seale: LL1, LL2, L13. This way
for raising numbers to negative powers is impossible on a slide rule such
as Fig. A.8, on which the numbers greater than 1 on the LogLog scales
ate associated with D, and numbers less than 1 are associated with\A
seale. Reciprocals or negative powers must be found as a separate
operation with such a slide rule. NS ©

ExssreLe 4.81.  Caleulate 0,472 by

Solution: Set the hairline to 0.4 on LL0Z, LL/2, LL, or 1\/1%
Place the index of C beneath the hairline
At 2 on C, 0.4% appears on LLO3, ete.

and ,xj\\:
0.4-2 = 6.25 on the L13, or equivale’r}t ‘umbers-greater-than-
one scale O
Exampre 4.8). Caleulate E = 2{5/?7 Solution: Several ways for
writing this example are www.dlfz?ardlibrary,org,jn
R = 171/&35"
log B = i%\log 17
loglog K= loglog 17 + log 1 — log 2.25
LL\ LL C
or \“

Set the haitline to 17 on LT3

Place 2:23\011 C beneath the hairline

Rezd:3i52 on LL3
The N{Iﬁﬂ, 1/2.25 = 0.445, could be determined using CI and C §cale§,
thus reducing this example to the form of a power like the others in this
article, .

4.9 Exponential Equations. Products or sums of logarithmic or expe-
nential quantities can be ealeulated easily if taken one step at a time.
2 4.7

8§
Exampre 4.9A. Caleulate 7.3 In YT 24 1In %5

Solution: Calculate 82/45, and 4.7/52
Find In 1.825, and In 0.0904
Multiply by 7.3 and 2.4 respectively
Subtract the two terms
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-Exampre 4.9B. Caleulate y = 18™%% for a series of values of £
" Solution: Mistakes are less likely if a tabular method is used for problems
like this. However, it is possible to make one, or perhaps two, slide

settings for the entire series within the range of the LogLog scales.

¢ 0.05¢ y = 1800w

5 0.25 2.06

10 0.5 4.25

15 0.75 8.75

0 1 18 ~

25 1.95 37 .

30 1.5 76 N\

'\

When ¢ = 20, 0.05¢ = 1.0, and 18'° = 1§ A\

The one-setting procedure is evident as: Wy
~\
Set the hairline to 18 on LL3, ete. 3
Place t = 20 on C beneath the hairline _\
At successive values of ¢ on C' read th{:ijﬁﬁar amounts
1 —‘6.5!
ExaMrLE 4.9C. Caleulste Yy = i 621! for a series of values of ¢.

Solution: This is shortened by redﬁ;’:'rﬁg 0.5/2.11 to 0.236. Tt s possible
in JShig FEMRPIgalsp denfind e~ 23491 one slide setting for a series of valucs
of t.  These then may be multiplied by 15/4.1 in another slide setting.
The method is left for t};Ee’\reader to devise. As check points, for ¢ =5
and ¢ = 10, g0 wu =.0.306 and 0.093.

ExampLe 4.9D, C lute y = e05 gin 924 for a series of values of ¢,
Solution: A tabular@hethod, and the use of trigonometric scales are indi-
cated. The suggebted column headings only aro given.

't\u
N\NM Angle 2x¢
L g:i&“ 5315_‘ gﬂ! in degrees sin2xt -y

4.1,(1.: Summary, Chapter 4, 1, Graphic Table of Functions. The slide
raleyNin many respects, is a graphical table of mathematical funetions
which offers speed and convenience in caleulation at some sacrifice in
acouracy. Howevor, the accuracy attainable is well within praetical
limits for a great many computation purposes, and the visual interpola-
tion along slide rule seales 18 easier than numerical interpolation in a table.

In addition to being a handy table of functions, the slide rule readily
performs operations on some of the tabular data, as in solving a triangle
by the law of sines, for example. :
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LogLog scales also can be solved on a slide rule not so equipped, but it
may require a few more operations.
The particular tables of funetions which are the subject of this chapter

are
M= 105 0rz = log M (Arts. 4.2, 4.7, Fig. 4.2)

M=c¢,orxz=nM (Arts. 4.2, 4.7)

R=M+ork =logu B (Art. 4.8, Figs. 4.7, 4.8)
L=loglh M {Art. 4.6)

L = loglog M (Art. 4.6) ~

2. Principle of Scales. The uniform L scale in association with D
solves by equating lengths O

s W

P !

M = 10%0rz = log M R
The LogLog seales in association with a log scale, D,.ﬁ}‘/u, or C solves

M=-cc=InM ’x:\\.‘

or X
M o= 105 3 = Jog M

asw 3
ell as wwak dbraulibrary.org.in

R = Mk =logu B

3. Recognition of Scale.s..i':;%\uniform scale is easily recognized on a
strange slide rule. To. bevuseful for logs, 0.801 on the uniform scale
should mateh 2 on a LogLSGa.le, and 0.602 should match 4. . -

LogLog scales eax;l’b\e ‘recognized and the scales they are assoc:atgd with
can be determinedfrom the fact that 10 to 100 on LL equals the distance
from 1 to 2 Oh\:th'é associated log scale; and from 0.2 to 0.02 equals the
distance fl"pl}‘t’\l to 2 on its associated log scale.

4. Opgipling Procedures. The equation

\ ) Ly = log Mo
indicates by subscripts the usual scales for reading and sett
for M or L, Powers of numbers such as

R =M
using C and D scales to multiply

(4.14)

ing to solve

(4.11)

E&n be found by reading log M on L and
¥ k. The inverse operation determines X.
The LogLog scale settings on commercial slide rules for natura.l. logs are

indicated by subscripts
Xp = In M ir
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or on Fig. A5
Toru = 1o My,
Using LogLog scales
B =M (4.11)

is solved by adding lengths on scales denoted by subscripts in the form

loglog B = loglog M -+ log k& (.13
LL LL C A\

{

7NN “
Any log seale on the slide may be used in place of C. Ir‘l,ap}xr’ticular, sub-
tracting a negative length on CI is often more conveifient, but perhaps

more likely to be incorrectly done by the unpract—i‘gé\d&f

Somefimes R or M are larger or smaller than the scale range permits.
Factoring in one of the following ways aids in«caltulating such problems.

R = (M¥%)2 = (M58 = Il{(f[:l’“:—}f; M MF2)
or N & '

o X
<N

www.d brﬁu l;bfwkﬁrﬁg ;ﬂ (M#%) ?-fs,:; ‘ak (ﬁ)k
A - a

4,11, Problems on .Ché’p}er 4, The group of problems in Art. 4.5 also
is suitable for solutionusing Loglog scales.

a1 N 4 4K 4L

Solve each pﬁtﬂ’lg following problems using the CI scale for theexponent;
check so@%ﬁth the C scale.

a 2208 150024 0.70-41 0.9502
'“*1}'1{}'0—0.13 4000008 1.0390-015 (. 120-042
¢N850—018 0.07-0.03 0.97¢-2 0.8%°

d 1350103 1,32%8 850023 0.19-%0%

All of the problems in each of the following rows can be solved in one slide
setting by a smitable choice of slide scale (C, CI, CIF, or CF) for the
exponent,

e 50t 5017 500-92 500
f 44.5 4&45 40.045 4—-0.45
g 0.81/3:8 0.0 0.82¢ 0.8-"15

h (Q.3L6 .30.16 0'31/3.1 . 0'3-—&41
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41 4] 4K 4L
Caleulate the Tollowing:
{17 87088 0.023 X 168 47 X 5.7 480 X 0.6%¢
j 1772 0.975%7 0.036- %%
k e (e"8 — e 18} /2 0.52 X 804 ol/24
1 {e®58 + §—0-58) /2 &—0.037 1.032125 o—11088
iM
Caleulate and plot each of the following on semi-log paper. N
ay=15X 1Qo-0e £(0 to 10) A
by = 2.1 X 1000 £0 to 20) <O
¢ y = 3.6 X 1003 £0 t0 2) O
dy—4gxloom  H0t02) N
ey =48 X 10700 1(0t010) o
fy =63 X 1070%% £(0 to 1@\\
gy = 8.4 X 10042 ‘#’(Oti 3)
h oy = 9.7 X 10704 zgogé} )
i.:;,,}
N

‘“

“Q’Q v
wWwy i?.‘bra ulibrary . org.in



PART Ii

Applications of the Slide Rule

to Various Fields A

/N

The examples and problems of Part T are synthetie ithseveral respects.
Algebraic formulas are avoided to a large extent iz%(}hapters 1 and 2, so0
that the reader unfamiliar with algebra can préfit from that portion.
Algebraic formulas with particular numericabyalites for the letter symbols
are & necessary part of some applications, | As another synthetic feature,
the exponents in Chapter 4 are a single pnihber, not a compliex of numbers
which must be reduced before proceedibgwitirthe expenential operation.

The examples of Part II demonstrate that the practical computations
of business, acience, and engifecting are not always s0 conveniently
Presented to the computer {V,éh though these examples are simplified in
Beveral respects. \ : '

Each problem is introtluced by a word or phrase indicating the field of
Practice it representgaid a brief statement of its nature. The algebraic
f?rmula and the ufite of the quantities are also given except for the very
Stmple problenisy’In addition, several sets of numerical data are given
3 3 means_for" providing practical caleulation exercises. The answer
to the firgtiset of numerical data is given; for many of the problems the
tumegicalealeulation for this first set of data is shown along with sug-
gestionsfor using the slide rule in its solution. T

In practical work, problems seldom are given as a formula requiring
Merely substitution of numbers in it as is the case here. The more com-
Mon problem situation requires careful analysis as well as numerical
Operations.

Even after the correct rational or empirical formula s determined, the
®mputer must select the appropriate units and conversion factors.
Thig step also has been given for the problems of Part II ir order to focus
atteﬁftion on the slide rule operations.

tthin each chapter, the examples are
Flated Part 1 chapter: products and quotients, simple powers
"gonometric functions, exponents or logarithms.

arranged in the order of the
and roots,



Chapter

AN
e,

BUSINESS, FINANCE, AND STATISTICS

X.\\:

The problems in this chapter are intended to shéwa few examples only.
An endless number of problems in accounting’rgtios, turnover, and inter-
est could be prepared. In statistics, also, the handful of examples is a
fraction of the possibilities ;& swmﬂhﬁgﬂh%pgéiﬁs 434 formulas.

Comments are given with a few, }:éf'the problems. Generally, the
caloulations are worked out for the first set of numerical data as an
example. Problems are arrangedin the order of the chapters of Part I
with which they correspondy, £ Several sets of numerical dats are given in
Parentheses, arranged in inditated order.

5.1. Division and Moultiplication. ProsrLem 5.1A. Accounting. The
accounting ratio; Cq{r’e?}t Ratio = Current Assets/Current Liabtlities.

Data: (Assets;%ﬁﬁiﬁties); (35,600; 15,400); (4850; 1970); (745; 365);
(5900;2 ) _

Exaraple: Ratio ~ 35,600/15,400 = 2.31

PRO}?hsE}v[ 5.1B. Accounting. The ratio of net profit to nect sales,
®xDressed as per cent is: £ = 100 X Profit/Sales.

Data: {(Profit Sales; R); (720; 12,200; R); (P; 4200; 8.4); (13,600; S;
8.7); (61,500; 705,500; R)

Example: B — 100 x 720/12,200 = 5.90

Cancellation of 100 with two zeros in the denominator simplifies decimal
Point placement.
---_---_‘_-_‘_-———
' Dunlap, Jack W and Albert K. Kurts, Handbook of Statistical Nomographs
Tabies ong Formulas, pages 103-140. New York: World Book Co., 1932.
143
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ProprEM 5.1C. Investment. The earning rate on an investment, as
per cent, is given by: Earning (%) = 100 Dividend/Cost.

Data: {Cost; Dividend; Earning); ($5250; $341; E); ($11,750; D;
4.89); (C; 192; 6.9%); ($420; $26; E).

Example: E = 100 X 341/5250 = 6.50%

ProbLEM 5.1D. Business. For straight line depreciation, and
neglecting removal cost and salvage value: D = I /l; or d = 100/1
where T is investment in dollars, [ is service life in years, d is{annual
depreciation in per cent, and D is depreciation in dollars per Fear.

Data: (I; }; D; d); ($250; 8 yrs.; D; d); ($3600; I; D; 39633 ; 25 yrs.;
$240; d); ($48,000; 42 yrs.; D; d)

Example: d = 100/8 = 12.5; D = 250/8 = $31260."

ProsrLem 5.1E. Business. Annual turmoyer of merchandise is
defined as cost of goods sold per year div@eﬁ by average inventory, or

L+ P

T Gar1laz
www.dbraulibrary.org.in N\ . .
where I's are beginning and ending inventories, and P is purchases, all in
dollars for the year. N

Data: (Is; I,; P; T); (7;';@00; 63,000; 417,000; T); (4300; 7500; P; 3.4);
(1250; 2140; 18,000; T); (500; 7,; 3400; 6.3) '

T

Example: T =\(T7,% 417 — 63)/(77 + 63)0.5 — 431/70 = 6.16

Practice in a@@ﬁra&c manipulation is associated with the last sct of values
in which the’ending inventory to attain a particular turnover is sought.
Progrey 5.1F. Insurance. If an annual insurance policy is can-
c”sill,ed' pro rata before expiration, the premium returnable is
V Pd
. P = -2 A
65 (dollars)
where d is number of days before expiration and P, is annual premium in
dollars.

Data: (Pa: d); ($75; 160); (342: 36); ($127; 205); ($67; 99).

Example: P = 75 X 160/365 = (73 + 2)160/365 = 160(1/5 + 2/365)
= $32 + $0.88 = $32.88

More accurate resuli is obtained if the number of days is factored intd
two parts as shown, and mental arithmetic is used for 160 X 1/5.
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PR{)BLEM 5.1CG. Business. The resultant price after a series of
diseounts is
P = P —d){l — ds)(1 — ds) ete- " (dollars)

here P, is list price and the d’s are discounts expressed a8 decimals.

Date: (ds; ds; d; P03 (30%; 10%:; 0%; $540); (20%; 10%; 5%; $860);
(40%; 2% 0%:; $42); (25%; 15%; 5%; $67).
Example: P = $540(0.7) (0.9) = $340

The G, CI, and D scales enable one to perform the example calculat.ion\

in one slide setting, Art. 1.18. A\
Proprem 5. 1H. Business. Retail price per unit, if mark up ;a,nd ot
quantity eost are known, is ;‘:f;,
Cy R84

Po=gqi=m

where ¢ is quotation guantity (dozen, gross, a,nd'serri), m is mark up as

8 ratio, O, 18 cost in dollars for the gquotation gl):@ﬁtity.

Data: (C'y; a3 m; Pu); ($167; 125 7% p.) (8580; 144; m; $5.99); (Co
12: 4875 $5.95); ($1.75; 15 10% 5 5)-

Example: P, = 167/(12 X 0-63‘ywmalﬁibrary,org‘jn

As in Problem 5.1G, it is pogdibie to golve these examples in one glide
+8 )

sefting,. ~
ProsrLEM 5.1L Smtisﬁé: One form of the Spearm&n-BrOWn formula
is A
ANY¥
.t\'"' _ 'rn(]- - TI)
'N\NW 1" = f"l_(], _ ?'ﬂ,)

O

where 7; i ‘eliability of a tesk 7=

times lofiger the test must be.

Dat}.« (ry: 7a; n); (0.37; 0.52; n); (0.73; 0.85; 1}
2} 3.5).

is desired’ reliability, » 18 number of

(0.80; 0.62: n); (0.78;

o g o 05200 = 03D
sample: n = Gar(r —058) o

5.2. Simple Powers and Roots. The problems in this article may be
solved with TLogLog scales, oF simple power and root scales a8 described

in Chapter 2. .
PropreM 5.2A. Statistics. Th

Om = ‘\/N'

e standard error of the mean is



146 APPLICATIONS OF THE SLIDE RULE

where ¢ is standard deviation of the distribution and N is number of
observations.

Data: (8; N; 8); (4.35; 500; 6,); (8.72; 150; 0,.); (3.86; N'; 0.052); (7.12;
1200; 8,,).

Example: 8,, = 4.35/+/500 = 0.195

ProsLEM 5.2B. Stafistics. The standard deviation of the sum or
difference of raw scores when the data are uncorrelated is

8 = V/6:* + 8,°

Data: (1; 62); (3.2; 1.65); (1.85; 4.3); (2.65; 2.45) ; (6. 755 4‘35)

Example: § = 4/3.2® 4 1.65% = 3.60 "3;

Proeuem 5.2C.  Statistics. The standard e{mr of the Pearson
product moment coefficient of correlation is

_d- ”.2 »

Q!

where r is the Pearson coefficient and N B number of cases or observations,

Data: (r; N); (037; 160); (0.26; 190) (0.74; 190); (0.57; 360)
S e G YO /V’lﬁO = 0.863/12.65 = 0.0684

ProBLEM 5.2D. Stams@cs The geometric mesn of a set of n numbers

is given by \\

..’~d—‘\/d1xd2xd3' ‘dﬂ

Data: Several nkamples for n = 6 are given. (5;7; 9; 11; 13: 15); (34;
35; 36\37 38;39); (155 25;35; 45; 55; 65); (3; 32; 56, 70; 121; 460)

Examﬂm\a_ VEXTXIXII X 13X 15 = /675000 — 9.37

5. 3 “Trigonometric Calculations. Trigonometrie functions are rare in
c'aleulatmus directly associated with business, finance, or statistics. One
\xample iz shown,

ProBrmm 5.3A.  Statistics. The corrected rank corrclation cocfficient
is

¥ = 2 8in gP
Data: (P); (0.14); (0.93); (0.52); (0.75)
Example: 7, = 2 sin ﬂzf'_'li* ~ 2 sin 0.0733 = 0.1464

The angle in radians must be converted to degrees for slide rule setting
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5.4, Logarithmic and Exponential Calculations. ProBLEM 5.4A.
Statistics. Ordinates for the nermal curve are given by

—xd

Y= — T
[} \/2.1_'
Data: Assuming n = 1 and @ = 1, calculate y for z = 0.3;1.5;1.64;2.6
—0.00
e * 0956 _ )
Example: y = e T 9506 - 0.382 N\

PropLEM 5.4B. Finance. The amount of P dollars for # ye?.J'\é\a:t\r
rate of interest compounded at ¢ years interval is given by « M

A = P(1 + ir)»* (dollars) Ky
where » is expressed as a decimal, \

Data: (P; ¢; 7; n; A); (4000; 1; 0.045; 15; 4); (2500\}05 0.03; n; 3000);
(P, 025 0035 12; 1300) (1000; 05 3 lO\, 2000)

Example: A = 4000(1 + 0.045)1 = 4000 >< §) 985 = 7740
ProerEM 5.4C. Finance. Paymentg\ to a ginking fund in constant
amounts for a depreciation résetwelbggitlibrary org.in
O 4
P - + -
where r i3 annual interesh r\te ag a decimal, » is number of annual pay-
ments, A is the amount fo'be accumulated, and P is annual payment.
Data: {r:n; A; P); {Q.{Mﬁ 15; $4500; P); (0.05; 10; A; $250}; (0.035; 20;
$13, 500 o)) ¥0.04; n; $5000; $500)

N\
0.045 X 4500 202.5
= $216.5
Example: P. = 10085 — 1 = 0.935 ¥ 0
PRo‘B@EM 5.4D. Pinanece. The amount of equal periodic payments
required to amortize a debt is given by

1

where A is the amount of the debt, n is number of payments, is interest

rate for payment interval as a deeimal.

Data: (r;n; 4; P); (0.045; 15; $4500; P); (0.055; 12; A; $400); (0.03; 10;
$8000; P) (r; 8; $2200; $240)

Example: 4500 X 0.045 = P[t — (L. 045)~ 1]
P = 4500 X 0.045/0.483 = §419
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ProsLeM 5.4K. Finance. The equation of Problem 5.4D is equally
applicable for monthly payments.

Data: (r;n; 4; P); (0.06/12; 20 mo; $250; P); (0.05/12; 18 mo; $175; P);
(0.06/12; «; $500; $20)

Example: 250 X 0.005 = P[1 — 1.005-29]
P = 1.25/(1 ~ 0.905) = $13.15

. \<\
O
pn
N
N
&v
\,
O
N\
D
www.dbraulibrary.org.in ‘:\’ N
3
N
O



CHEMISTRY AND PHYSICS 7

S

at ¥

N

Scientific work in general is represented by prol}lgxhs’selected from two
prineipal fields. The terms physics or chemisgry\describe all or most, of
these examples. AY

6.1.. Divisiqn and Multiplica{;.l;gg}w‘ d rﬁ()ﬁ%]}:;g{_ 59'011%,1 Mechanics. If a
load is to be lifted by & differential hoisthiving & niechanical advantage
of 16, what force must be exerted neglecting friction? :

Data: (Loads); (2735 1b; 3720 15,1560 1b; 3.7 tons)
O
Hxample: 2735/16 = 1710

ProsrEM 6.1B. Eﬁ,:;;;;d-.;,sio-n of Metals. The mean coefficients of
lincar expansion pofrdegree F are: 0.0000096 for copper; 0.0000128 for
aluminum; O.UOQQO}SQ for steel.

’\

Deta; (matezjiéjl s length, ft; temp change, °F; length char'lge, f6); (co;?per ,
620} 120; ); (steel; 125; + 0,175); (eluminum; 1200; 90;
2.2); (copper; 860; ___; 0.95)

-6  +2 +2 -2
Example: 9.6 x 6.20 X 1.20 = 71.4 = 0.714

¥ the CI, C, and D scales are uscd, one slide setting is sufficient for this
example,

ProBLEM 6.1C. Sound. If sound travels 1080 feet per second and
“veral orashes of thunder are timed after the flash with a stop watch, .ﬁnd
the distances to each of the strokes if the times are: 4.5 sec; 7.2 gec; 8.5
se¢; 0.4 geq.

149
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Iixample: 1080 X 4.5 = 4860 ft.

Prosrem 6.1D. Thermometry. Temperatures in °F and °C are
related by

F=18C+ 32

where F is Fahrenheit temperature and € is Centigrade temperature.
Find temperatures on the other scale for the followi ing melting points of
metals: tin 232°C; zinc 419°C; copper 1981°F; lead 628°F,
N\
Example: F = 1.8 X 232 + 32 = 450°
O\

ProrLEM 6.1B. Radio. For short wave ca]culatlons\lt 18 often con-

venient to determine wave lengths in inches from A\

 {

vl 2%7)
A= 118 X 1}?_ (in,)~>‘

where f is frequency in cycles per see. Det(ea:)mne M or f for: 2.95; 2500
mega~cycles; 1.26"; 6000 mega-cycles. M

Example: f = 11.8 X 10%/2.95 = 4@QX 10%, or 4000 mega-cycles per
sec. N

N

w WA Fror gE‘Bectrzutgr “The capacity of a parallel plate con-
denser is given hy

P4

OC=2 0 esu)

b\}
where % is dlelectrm constant; A is area of plate in sq cm; d is distance
between platesqn cm,

Data: (Fc,\A\ C); (3.7; 540; 0.052; C); (4.8; 165; d; 1520); (k; 720
0077 1680) (1; 4; 1.8; 335)

E}g%p}ple C = (3.7 X 540)/ (4% X 0.052) = 3060

\”'Ohé less slide operation is possible if z-folded seales are available.
ProBLEM 6.1G. Electricity. Ohm's law is

E=RI
where R is resistance in ohms, [ is current in amps, ¥ ig in volts.

Data: (E; B; 1); (110; B; 4.7); (B; 5920; 0.675); (15,000; 465; I); (E;
1752; 1.31)

Example: B = 110/4.7 = 934

Prorrem 61H Electricity. Several inductive resctances in parallel
have an equivalent reactance, X, given by
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1 1 1 1
X = 5L T oafle T 2wy

where f is frequency of alternating current in cycles per sec, L’s are
inductances in henrys, X is in ohms.

Data: (f; Lu; Le; Ly; X); (60; 0.3; 0.13; 0.072; X); (400; L,; 0.076; 0.175;
155); (60; 0.45; 0.67; Ls; 82); (f; 0.038; 0.092; 0.071; 490)
60 1 i 1
DS . e o i . =19
Example: 2 X 7 X % = 03 + 013 - 0072 24.93
X = 120x/24.93 = 15.12

N

o\
1f seales folded at  are available, the multiplication by = may b, per-

formed as shown in Fig. 1.29.
ProprEM 6.11. Electricity. The equivalent resistance.:fof’ several

resistances in parallel, Fig. 6.1, is given by

11,1 b NS N N
R RTETRT 7 % % %
2

where Z’s are in ohms. Assume three resigbol’ Fig. 6.1. Resistors in
in parallel for the problems. W Parallel

Data: (Ry: R.; Rs; B); (27; 5mwﬂbp{£hﬁrhk§zbé§,i;$-7); (162; 137; £s;
67); (3.72; 3.10; Ry; 2.15) 3%

11,1, 1 &
E. P = — — /N
rample: 3 = 57 + 5 + g7 (O
— 0.0371 +0B 0.0119 = 0.249
R = 1/0.249.51.016

A\ ¥ . .
The four digit answermay be obtained by partial mental operation as

described in AS{L}I&

ProBrEM 60 Gas Law. The perfect gas equation
4 \Q' P]V] — Psz
@ 2 T Ty

contains six quantities, and if five are known the remaining one can be
caleulated. In the equation, T and T\, are absolute temperatures; P,

and P, are absolute pressures; V1 and Vs are volumes, The given data

and the required answers may be on other temperature scales or the pres-
each pair of quantities may be in

sures may be gauge pressures. Also, _
any appropriate units, but must be in the same units.

Data: (Py; Vi: ty; Pa; Va; 8); (260; 5.8; 20°C; P.; 8.6; 80°C); (190; 1.7;
820°F; 240; V4; 240°F); (360; 9.8; &; 85; 18.6; 400°C); (P1; 0.85;
370°F; 480; 1.1; 560°F); (25; 5.1; 320°C; 120; 2.3; &o). (Given
pressures in psia, volumes in cu ft.)
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260 X 58 Py X 86
Example: 5o2="55 = 573 + 80
p, _ 260 X 5.8 X 333 _
2T T3 X R.6

211

8.2. Simple Powers and Roots. ProsLEM 6.2A. Strength of Mate-
rials. The average stress in a round rod subjected to tension is

4P

8= 7 (I per gq in.) N
where P is load in Ib; D is diam in in. O\
Data: (P; D; S); (6500;0.46; S}; (42,000; D; 125,000}; (Rﬁ).S%E}; 32,008);
(13,400; 2.25; S) N
. 4X 6500 v
EX&IIIPIB. S = m = 39,200 3

Mental multiplication of 4 X 6500 may sﬁg%d up solution.
ProBrum 6.2B. Electricity. Powep.i:rl\'a d.e, electrie cireuit is given by

L
} P=IR= 57 (watts)
www.dbraulibrary.org.in N

where I is current in amps;~&is resistance in ochms;  is in volts.

Data: (I; B; E; P); (607.65; E; P); (8.6; K; E; 746); (I; 4.6; 120; P);
(I3 B; 110; 3460)
Example: P = ¥56%°X 7.65 = 43,000; E = 573
WX
ProsrEW6:2C. Chemisiry. The solubility product constant Koy of 2
salt is a\?ﬁmure of the solubility of the salt. K,, for salts of the type
AB; (Phl: is an example) may be calculated from
e) K., = C.Cs?
Swhere € represents the molar concentration of the ion represented by the

subaeript,

Data: (Ca; Cs; Koy Salt); (0.00152; 0.00304; K.,; PbL): (8 X 107
1.6 X 10~5; K5 Co(OH)a); (Ca; 7.8 X 10-2; 2.4 X 10—4; PbCL);
(0.92 X 1074; Cp; 3.2 X 10-11; Mg(OH)y)

Example: K., = 0.00152 X 0.00804? = 1.4 X 10-10

ProsLem 6.2D. Chemistry, The strength of acids depends upon the
concentration of hydrogen ions present. In dilute solutions the ioniza-
tion constant K;is a measure of the relative strength of the acid. K for
acids of the type HX, acetic acid (H — C:H;0.) for example, may be
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calculated from
O

K=a—c

where € represents the molar concentration of the H ion.

Data: (Cx; Ki; Acid); (0.00134; K;; acetic); (0.0065; Kq; nitrous); (Cz;
5.4 X 10~*; benzoic); (Ca; 7 X 10~1%; hydrocyanic)

Example: K; = (1.34 X 107%)2/(1 — 1.34¢ X 107%) = 1.82 X 10°*

6.3. Trigonometric Calculations. PROBLEM 6.3A. Physical Chetris®
try. In the study of X-ray data on crystals, Bragg’s Law is 'S\

ol
£

2d sin 6 = nA W&
z2 { ?

where d is distance between stom-bearing planes in Aﬂgsﬂalns, n is order
of reflection of the X-rays, A is wave length of the X-tays in Angstroms,
and 0 is the angle of incidence of the X-rays. A" '
Data:n = 1, A = 1.54. Find d for 8 = 9°5206%007; 25°117; 3°157
1.52 o '
2 sin 9°52° 4'33 dbeal Mhcary ors i
Set hairline to 1.54 on D s Y et
Place 9°52’ on 8§ beneath hairline
At 2 on CI read 4.49-00n'D

Prosrem 6.3B. Elect{ﬁ%{}:' Alternating current impedances are

commonly expressed in oherof the forms
N/
:

Example: d =

where, as showﬁ&r"l\f‘ig. 6.2, "
"Z:t-an"‘ X AT TV Fig. 6.2. Im-
ﬁ{f B’ Z=VE+X pedance Vectors

S

l‘ransfMation from one form to the other is frequently neede:

ealls for solution of a right triangle.

Data: (R; X; Z; 8); (17.8; 42.5; Z; 8); (B; X; 8.50; 52
Z: 8); (R; X; 10.9; 87%)

Example: tan § = 42.5/17.8 = 2.38, 0r Z = 46.1/67.25°

d, which

°); (7.2; —35.0;

—I ProBLEM 6.3C. M echanics. Resolution of
z ® T’_ forces into components along particular lines and
P — the determination of the resultant of several forees

oceur frequently in mechanics. The transforma-

Fig. 6.8. Composition !
POSHON  tion is essentially a triangle problem, Fig. 6.3.

of Force Vectors
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Data: (By; Ro; ¢; ; R); (1.75; 0.54 62°; a3 R); (13.4; Ra; ¢; 42°; 26.5);
(R.; 3.8; 125%; 32°; R); (Bi; Bo; 110°; 40°; 5.8)

Example: B, = 0.54 cos 62° = 0.254
R, = 0.54 sin 62° = 0.477
@ = tan—! 0.477/2.004 = 13.4°
0.4772 _
R = 2004 + J56e = 2.061
ProbLEM 6.3D. Light. The index of refraction is a futiction of
material and volor N
A\
sin I A\
sin B )

"N

where T is the angle of incidence and £ is angle Qf?refmction

Data: (I3 R; »); (680°; 40.5%; n); (I; 35°% N 87 (55°; R; 1.96); (75°%
46.5%; n) A

Examph, 1 = gin 60°/sin 40.5°, or ﬂ/ﬁh}ého = 1/sin 40.5°;n = 1.33

6.4. Logarithmic and Exponpntml Calculations. Promrzm  6.4A.
whdrmodphawitbrgsatipein Baromvﬁmc pressure at different clevations is
given by

“P = 90.02 X ¢ 00384

where & is elevation jg;‘%housands of feet.
Data: (h; P); (8.2}\I§); (21; P); (h; 17.6); (h; 14.5)
Example: Pyek(29 92¢ 109552 = 29,99 X 0.73 = 21.8

PropLEM D6.4B. Physical Chemistry. The pII of a solution and the
actnang “A z+, of the hydrogen ion arc related by the equation

N pH = lﬂg AH+

\‘Dat& (pH: Ans); (4.35; Ags); (3.75; Aws); (6.10; Ags); (pH; 0.0082);
(pHT; 0.00036); (pH ; 0.000000082)

Example: log Ay = —4.35;]og AL = 435
JTE
Set to the mantissa, 0.35, on L. Set to 0.35 on D

T4 1/ A y+ appears on N3
Read 224 on T) for 1/A 4+ —4
On D1 or on CI aligned read A+ appears on 1/Ns as 0. 446
0.446

PR?FLEM 6.4C. Physical Chemistry. The pressures and temperature?
of boiling water are related by the equation
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in P, _ AH,(Ty — Ty)
P, RT.T,

where R is 1.087 cal per mole-deg AH, is 9720 cal per mole at 760 mm

pressure, Ty and T'; are in degrees K.

Data: (Pe; Ty): (650 mm; T'3); (580 mm; T'); (810 mm; Ts}; (550 mm;
Ts); (P2; 365°K); (Py; 368°K); (Ps; 379°K); (Py; 360°K)

Examuolo: o 890 — _9720(Ts — 273)
ple:In =55 = 1.087 X T2 X 278

this reduces to . . ¢\
1.00875T, = 273 ' NS ©
or since for numbers close to 1, the reciprocal is given closely by,
1 LY
ml—a (@ <00D) N
{1+ a) ( ’
and \\

L&
T, = 273 — 0.00875 X 273 270.6

Propuen 6.4D. Mechanics. The ma;qifhll;n belt tension ratio for a

pulley and belt, Fig. 6.4, is gi“xﬁ?ﬂr@ﬂbrz:lj}:it;l'ary.OI'g.in
T, )

Ty &

£

where u is eoefficient of fris@c;ﬁ ‘between pulley and belt, ¢

= b

is angle of contact in radians; 7> and T’ are belt, tensions Fig. 6.4.
in like units. ) Belt Tension
Diagram

Data: (u; 8; T'y; .21@)\}"(&).304; 100°; 65 ib; Te); (0.24; 8; 175
Ib; 220 1B);40-37; 540°; T,; 68 1b); (u; 810%; 56 1b; 410 1b)

0.304 X 100°

Examplg:%%’ = e 53 = ¢t = 1.70
NJT, = 170 X 65 = 110.51b

PromrnEM 6.4E. Physical Chemisiry. The free energy change, AF,

for the reaction
H.PO, = HPO, = +H*
is given by
AF» = —RTIn K
where E is 1.087 cal per mole-degree, T' is degrees Kelvin.

Data: (AF; T; K); (18,000 cal; 298°K; K); (16,500 cal; 310°K; K); (AF;
360°K; 2.5 X 1074); (AF; 280°K; 4.5 X 10-1%)
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- —18000 _ .

m%: 30.4

The LogLog scales seldom include 480 or —30, but since

Iog% — 0.434 In %

log% — 0434 X 30.4 = 13.2

O
N
\J
4
P
www. dbraulibrary.org.in
y.org R 35;\3
A
N\
O
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ENGINEERING

"

«)

The problems in this chaptesavetiialiacsspanilyia representative
sample of engineering applicationss\ They have been selected: (a) to
show methods of attack on some of the more difficult or complex slide rule
caleulations; (b) to indicate t}xé'?ariety of fields of usefulness; and (c) to
provide problems for practiee which are not merely numbers, but have
bhysical meaning associated with them.

Descriptions of thes&fing, method for placing the decimal point, and
other comments are’given with some of the problems. Generally, and as
an example, thevdalbulations are worked out for the first set of numerical
data. Problephsvare arranged in the order of the chapters of Part T to
which they eQ¥respond.

7.1 Division and Multiplication. ProsLEM 7.14. Fluid Mechanics,
Hydrauligs. ‘The pressure of water at various depths, H in ft, is given by

p = Hd {(Ib per sq ft)

where d is density in 1b per cu ft, or 62.4 for fresh water. Find the water
Pressure at the foot of a dam if the depth of water is: 730 ft; 550 ft; 250 ft;
1. Determine pressures in 1b per sq in.
Example:P = 62.41;1—730 = 316 (Ib per sq in)

PRoBLEN 7.1B.  Fluid Mechanics, Hydraulics. The force
Submerged in 5 liquid is given by

F=dHA
187

on a surface
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where d is density of liquid in Ib per cu ft, A is depth in ft to center of
gravity of surface, and A is area of surface in sq ft. Ii the density of
823 water is 64 1b per cu ft, find the force tending to erush a submarine
door of 2.25 sq ft submerged to depths of: 135 £t; 220 ft; 160 ft; 120 ft.

Example: F = 64 X 135 X 2.25 = 19,400 lb. Multiplying three factors
in one setting of the slide is possible using CI, C, and D scales.

Set hairline to 64 on D

Place 135 on CI beneath hairline )

At 225 on C read answer on D N
Prosrum 7.1C. Machine Tools. The surface speed of.a flywheel,

grinder, pulley or other rotating device is given by {0

L ==DS§

L&
where D is diam in {4, 8 is rpm, and L is in fi, p"é;'\min.

Data: (D; 8; L); (1.5; 37.5; L); (D; 875;,@0); (0.67; 1800; L}; (0.167;
8; 5000) R
Example: I = # X 1.5 X 375 = l?ﬁSﬂi’ Tf w-folded scalos are available
WWW %PTP lofhindex of © 60 1.5 >
AT 75 on CRd 5 x 375°on D (560 approx.)
x timos the product appears on DF

el
N

ProeLEM 7.1D, ’{Ja};;madynamics. The efficicncy of a thermal
process is given by'\'\" i

e _ 2545hp
2O TR

where thae(;‘)-‘ﬁ% is in Btu per hp-hr, § is Btu input per hr, and kp I8
horsep@ef output.

Date (@; kp); (17,450; 2.2); (6280; 0.8); (9800; 1.3); (13,000; 18);
~O (750,000; 11.7)

Example: n = 2545 X 2.2/17,450 = 0,321, or 32.19
Provrem 7.1E. Mechanics. The maximum stress at any section of
a uniform beam is given by
Me

5= —

I

where M is hending moment at the section in in-lb, ¢ is distance from
center of gravity to extreme fiber in in., I is moment of inertia in in.*

Data: (M ¢; T; 5); (41,000; 6; 15.7; 5); (M 3.75; 24.5; 12,000); (8400;
¢; L.75; 8000); (62,500; 5.7; 35.6; s)
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41,000 X 6

Example: s = 157

= 15,650

ProBrEM 7.1F.  Machine Tools. The time of operation for a cut on a
milling machine is given by

L

T = —
EXf
where L is length of cut in in., f is feed in in. per rev, E is rpm, and T is
in min. | A
Data: (I; B; f; 17; (18.5; 125; 0.07; T); (8.5; 625; 0.03; T); (lﬁ.O;s{B;
0.055; 2.5); (4.5; 425; f; 0.8) PR
Example: 77 = 13.5/(125 X 0.07) = 1.54
Set hairline to 13.5 on D R
Place 125 on C beneath hairline G
At 0.07 on CI read answer on D O
2.
Prosuem 7.1G.  Fluid Mechanics. The powet required to elevate a
liquid, neglecting pipe friction, is P N\%
833 X GHS, AN
hp = 53 G dbraulibrars By R

where 8.33 1b is the weight of a ga}]t)ﬁ of water, S, is tl}e spectfie gra,v‘ity
of liquid being pumped, H is height of pumping in ft, G is rate of pumping
in gal per min, and = is pum{ieiﬂiciency.

Data: (G; H; S,; kp); (5[}@0}75; 1.03; hp); (3200; 165; 1; Ap); (G; 42; 1,
400); (650; 15;1@%%p); (G; 250; 1; 600); (1200; H; 1; 200)
Example: hp — (3.88°X 5000 X 75 X 1.08)/(33,000 X 0.7) = 139. An

operating sequq@e ‘which requires minimum slide movement is

AN'8.330 8o Bor g3 = 130

ol N 0.70 330
PROQ}E}‘\{ 7.1H. Electricity. The resistance of a conductor is given by
rL
B = i

where 7 is resistivity of the material in ohms per circular mil-ft, L is

length in ft, 4 is area in cireular mils

Data: (L; A; R; #); (650; 16,500; R; 10.8); (1100; 105,500.; R; .177.52;
(4800 211,600; 0.245; 7); (I; 4100; 5.4; 10.8); (1800; 4;1.21; 17.6)

Example: B = 10,8 X 650/16,500 = 0.426. (Coppeor wire resistivity is

10.8 at 25°C; aluminum wire resistivity is 17.6 at 25°C.)
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Pronrem 7.11. Electricity. Area of a conductor in circular mils is
equal to the diameter of solid round conductor in thousandths of inches
squared. Equivalent cross-sectional area of rectangular conductor in
gircular mils is

A= wxbp
m

where W and D are width and .depth in thousandths of an in. Find
circular mil equivalent for square and rectangular bars as follows: 0.375”
X 0.5 0.375" X 3"; 0.25" X 2.5; 0.625" X 0.625"".

N\
Example: A = % X 375 X 500 = 239,000 ‘O
'\
Set hairline to 500 on DF N\
Place 375 on CI beneath the hairline g )

The product appears on DF at the index.of" (.JI as 187.5 X 10°
Division by » appears on D at the indexaf CI
To multiply by 4 set hairline to 4 011:&\cmd read on D

Prosiem 7.1). Machine Design The coefficient of friction for a
lubrieated bearing is given by the em’plrlcal equation

www dbraulibr ary.org.in 4.73ZND

where Z is ghsolute wssosmy in poises, N is ]ournal speed in rpm, D is
bearing diam in. P\let bearing pressure, 1b per sq in., € is clearance 1o

Data: (Z; N; DAP; ©); (22.6; 1800; 4.0; 406; 0.004); (14.5; 3600; 2.6;
500; 0:003); (12.4; 3000; 3.75; 375; 0.004); (56.0; 900; 6.25; 520;
0.006)"

AN 473 X 22.6 X 1800 X 4.0
Exf?ﬂe‘f = 0002 + 75w < 106 % 0.004
o) +1  +1  +3
Q _ 473 X 2.26 X 1.8 X 4
0002 + —5 4% 206 X 40
+10 +2 -3
= 0.002 + 0.000473 = 0.002473

Prosrgm 7.1K. Electrical Engineering. The reactance for an alter-
nating current series cireuit is given by

= 2xfL — (ohms)

2f(*

where f is frequency in cycles per sec, L is inductance in henrys, € 18
capacitance in farads.
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Data: {f; L; C; X); (400; 0.0017; 0.00078; X); (60; L; 0.00095; 0.45);
(12,000; 0.003; C; 8); (f; 0.0024; 0.0005; X)

Example: X = 2 4 . -___ﬁ_____l._____,= -
D X 400 3 0,6017 37 400 600078 4.27 — Q.51

Prosrem 7.1L.  Electrical Engincering. For a resonant cirenit, X in
the equation of Problem 7.1K becomes zero, or

2L = §£f’é .
Data: (f; L; C); (400; I.: 0.0000085); (60; 0.35; €; {f; 0.0016; 6.000062);
(5600; 0.00032; C) R
Example: 800r X L = (8007 % 01.0000085) _ ~.‘“}"
L= I Y- O~
OB X 077 X 8B X 107~ 1

_ Iffissolved for as in the third set of data, sguérg root is involved ; such
1s the nature of some of the problems in thewhekt article.

7.2, Simple Powers and Roots. The problems in this article may be
solved with Loglog seales, or simple p;?virér and root seales as described

in Chapter 2, N
ProBLEy 7.24A. ?’Mmadﬂdﬁ%ﬁl‘ﬂm-mmpg vekocity of vapor

flow, ¥,, in a nozzle is given b
. 8 °

’\g = 7780kt ~ hs)

'Where Viisin ft pet e’é;z',”g is acceleration of gravity, 32.2 {t per sec?, 778
13 fi-lb per Btu, k{and k. are in Btu per Ib.

2N\
Data: (#,; haj¥sY; (1257; 1107; Va); (e 1050; 3000); (1420, he; 3100);

(13154 }150; V)
Examplef.V,2 = 64.4 X 778(1257 ~ 1107)
N/ +6
= 50,200 X 150 = 7.52
+3
Ve = 2.74 = 2740

Provuem 7.2B. Structures. The
buckling load on a column is

Fuler formula for maximum

where I is modulus of elasticity 1b per sq in., 7 is moment of inertia in.*,
lis length of ecolumn, in in. : :
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Data: (£ = 20 X 109; (I; ; P); (16.72; 185 P); (I; 12'; 65,000); (37.5;
22 P); (12.6; I; 38,000}

w2 X 20 X 10% X 16.72
(18 X 12)?

Example: P = = 102,000 1b
Column length in ft must be converted to in. Folded scales facilitate
one multiplication by =.

Proerem 7.2C. Thermodynaemics. The specific heat at constant

pressure for CO; is given by the empirical equation A~
&
0, =162 — 65?0 n 1.41 ;: 10 O

'\
where 7 is degrees Rankine. Find €, for the follo:«vir‘lg‘;’ temperatures:
T00°R; 640°R; 930°R; 520°R ON

6530  1.41 X 108 N

Example: €, = 16.2 — =30 + VR EIL

= 162 — 9.33 -+ 2.88 = 0.76n"

Decimal peint position is simplified by‘whtmg T = 700 = 0.7 X 10° for
the last term,

If €, were given and T soughty solutlon of a quadratic equation would
berredipedibrary org.in &N

ProBrLEM 7.2D. leways and Highways. The super-elevation of the
outside rail on & rallwa,y ‘ourve is given by

N _ v

\ \ Y
where d is rail epacmg, V is design speed of train ft per 560, R is radius of
curve ft, gi JS\aceeleramon of gravity. For highways, d is width of road.

Data: d\\ior standard gauge railway is 4 ft 8 1/2 in., ¢ = 32.2 ft/sec’;
NER; V5 e); (1400; 102.5; ¢); (B; 38.7; 0.3); (180{} V; 0.7); (1200;
' 132; e)

) 4708 X 102.5%
\Exa,mple. e = m

/N

= 1.10

ProeLuM 7.2E.  Bridges and Transmission Lines. Suspension bridge
cables and overhead electric transmission lines
cables are sometimes assumed to hang in a paré-
boli¢ curve, Fig. 7.1, for which

g Jrse
Fig. 7.1. Suspension 81

Cab . . .
able where d is sag at mid-span below supports in ft; W

is load pev ft in Ib, S is span in ft, H is horizontal tension Ib.
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Data: (W; 8; H; d); {1.42; 1100; 12,000; 4); (245; 860; H; 21); (1.82; S;
8000; 5.7); {0.85; 350 6500; 4)

L 142 X 11002

Propurm 7.2F. Bridges and Tronsmission Lines. The length of
cable in Problem 7.2F is given by

8 d 324 )
L=S(1+382‘*——5—S—4+"') (ft) \

where the symbols have the same meaning as in Problem 7.2E. \ \)

Data: (d; 8); (17.9; 1100); (29; 960); (50; 1000); (7.5; 450) .\ -

' 7.9 32 17.9Y\ D
Example: L = 1100 (1 + 3 X i — F X 1100“)

1100(1 + 0. 0071 -7
= 1107.8

The third term in the series is negligible wheh d> S is small say less than
1/20, as it is for all of these problems,  \J
ProsrEm 7.2G. Machine Design. The amplitude of vibration for a

load suspended on a spring @‘g&yggrgghbral y.orgin

W

Z AL+ X in.

kg\ o + 0 (in.)
where W is weight in Ib, k\s\sprlno‘ scale in 1b per in., g is acceleration of
gravity in. per sec?; Vi i3 sinitial velocity in. per see, X, is initial displace-
ment in in. Py X

Data: ¢ = 336 m\,isec (Wi k; Vo; Xos 93 (62;22;75; 1.5, y); (W; 15; 48;
2.4; 52%(27 k: 83: 1.8; 3.6); (750; 80; 17; X»; 1.8); (13; 7; Va;

19 74)

il

.\\.

52 X 75° ) = /3L T 295 = 6.06
Exan‘q{le; 355 356 + 1.5 4/34

Prosrev 7.2H. Heat Transfer. The Stefan-Boltzmann law for
black body radiation is

4
g = 0.1744 (1(1]70) (Btu per sq ft}

where A is radiation surface aves sq ft, 7" is in degrees Rankine, and 0.174

is a natural constant.

Data: (4; T; g); (5.2; 1800°R; ¢); (3.2; 1400°R; g); (4; 3300°R; 720);
(18.5; T'; 400)
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1800
100

The LoglLog scales arc less accurate for finding 18* than the simple power
scales, and the answer must be factored into 182 X 18% for example, in
using some LogLog scales.

Prosiew 7.21. Fluid Mechanics. Theoretical Venturi flow rate is
given by

Example: ¢ = 0174 X 5 2( ) 94,000

Q= — 4. \/Zg (P1 —~ P3) {(cu ft per sec)
[ (A Q
Al . N
+

where A; and A, are areas in sq {t, P, and P, are pregsyres in b per
54 ft, g is acceleration of gravity in {t per see?, w is speuﬁu weight of fluid
in 1b per cu ft. .

Data: (Ay; Az Pr; Po;w; ) (1.00; 0.52; 11.6; 4”9 624 €); (0.82; 0.36;
P1; 21; 56; 4.7); (0.17; 0.051; 34.0; 8,, t; 0.43); (4.; 0.25; 77;
17; 0.076; 7D A

\ el
0.52 \[2 X 322
Example: = e et s L e 11.6 — 4.9
ple: ¢ iy =2 )
www.dbraulibrary.org.
" O_SQJLM X G
2.4 X073

ProBrEM 7.2J. Marh@ie Design. The load which may safely be
placed on a coil sprmﬁls‘ given by

ndsS
e F=gpxg 1™
where ¢ is wire diam, in., S is allowable shear stress, 1b per sq in., D i8
coil dlan{"’h Kis Wall"s Factor,

Data ‘s = 55,000; K = 1.95; (d; D; F); (0.375; 2.5; F); (d; 4.5; 1750);
" (0.460; D; 1180); (0.125; 0.83. F)

. _ 7 X 0.375% X 55,000 _
\Emmple P xesxias = 364

Mentally, 8 X 1.25 = 10, and 10 X 2.5 = 25. The 0.375° may be read
as 0.05628 and = X 55,000 X 0.0528/25 = 364.

ProBrLEM 7.2K. Machine Design. The deflection of a coil spring is
given by

= 1.60

_ 8FDn .
¥=-—pg (n)
where F ig load in Ibs, D is coil diam in., » is number of active coils, d i
wire diam in., and G is shear modulus in lbs per sq in. If the values of #
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for the springs of Problem 7.9¥ are 9, 17, 27, and 13 respectively, find the
deflections for & = 12,000,000.

S XUT2X28 X9 _

Fxample: ¥ = G375 K B X 10F 0

Obtain 2.5% and 0.375* separately, then since 8 X 9/12 = 6, this reduces
to

6 X972 X 15.6

¥ = 75.01975 X 10°

PropruM 7.2L. Machine Design. The relationship between diamed, >
ters of hollow and solid shafts having the same maximum stress 18 ()
D O

Dl]s = i_—-—_.Ka ’\.’:

N

where Dy is outside diam of hollow shaft, D is diam of solid ‘shaft, and K
is the ratio of inside diam, D, t0 outside diam for the hellow shaft.

Data: (D; K; Do; Da); (855 0-5; Do; Di); (D5 K;%?b:‘S-O); (1.6; K; 2.0;
DJ); (3.25; 0.875; Do; Do) PN

"

Example: The arithmetic may be shortern,e(}’bﬁr writing

Dy = _ﬁﬁg‘@‘%@:ﬂﬁﬁ&aﬁ;ﬁ%ms = 1.79

V1030 S
Propuim 7.2M. Fluid M g«::h&nics. The rate of flow of water over &
triangular notch weir i gl&e{tby

Q= {130511’ 3 tan g (cu ft per min}

where H is the jl-ré.ah“in in., 8 is angle of noteh.
Data: (H; 850); (2.5, 907 Q5 (8.5 6 66); (4.7; 80%; @); (H; 100°44)
FxarppléDQ = 0.305 X 25" = 3.02

The }172 power 1may be obtained with LogLeg scales,
he written

or this example may

9.5% = 2.5 X 9.5%

and solved as shown in Chapter 2.
The Manning formula for steady

Prosrem 7.2N. Fluid M echandes.
aniform flow of a liguid is
7 = 12 prgn
n
where 7 is roughness factor in ft, R is hydraulic depth in f&, 8 is the slope
of energy grade line, ¥ is speed in ft per sec.



166 APPLICATIONS OF THE SLIDE RULE

Data: (n; B; 8; V); (0.016; 0.27; 0.52; V); (0.030; 0.40; S; 0.56); (0.022:
R;0.30; 1.10): (n; 0.16; 0.75; 7.2)
1.49

: = e—— 3% % -
Exzample: ¥V 0.016 0.27% (.52 28.1

Prosrem 7.2P. Elecirical Engineering. The energy stored in a mag-
netic field under steady current conditions is given by
L

W = 7 (W’ﬁ:tts) N\

N

where L is inductance in henrys and T is current in amps< N

Data: (L; I; W); (0.42;75; WY; (1.7; I; 450); (I; 27; 84@)3'(0.37; 18.5; W)

Example: W = &;7—{ = 1180 \\

Prosrem 7.2Q. Thermodynamics. Van S@r Waal’s Equation
(P + 5‘;) e '—‘i}j:\= BT

if solved for v leads to a cubic eqqsfﬁnn. Tor nitrogen the constants a, b,

andy Bbandi Bddy 06 hy and 0:729 respectively, where P is pressurc in

atmospheres and T is temperature in degrees Rankine.

Data: (P; T 0); (100;{1@00‘*3; v); (500; 7'; 1.8); (200; 1200°R; v); (350;
960°1R; v) \\ ™

Example: (Jopﬁé%‘%) @ — 0.617) = 0.729 X 1000
or \\“
O
O v+ 344 = 7,907 + 222
.\" 3

“Beveral trials, such as v = 1, 9=7 v=175, lead to v = 7.48 as one
\solut-ion.

7.3. Trigonometric Calculations. Proprem7.3A. Structures. In the
design of roof trusses the Duchemin formula for
wind loads is often used, Fig, 7.2.

] 2 sin @

' i _Pl -+ sin? §

. where P is horizontal wind pressure in lb per
sq ft, 8 is roof angle with horizontal, P, is pressure normal to roof.

Data: (6; tan 6; P; I,); (10°; tan 8; 22; P,); (9; 1/6; 27; P.); (0; 1/4; 30;
P.); (20° tan 6; 26; P,)

B

Fig. 7.2. Roof Wind Load
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.p 22X 2sin 10° 44 X 0.1736 . _
Example: P, = T s 10° = T4 00738 = 7.40; tan ¢ = 0.176

Prosuem 7.3B.  Machine Design. The velocity ratio for helical gears
is given by
U - D cos t}bﬂ

we Dy cos q)l

where subscripts 1 and 2 refer to gears 1 and 2, ¢'s are corresponding
helix angles, D's are pitch diam. A\

Data: (Dy; Da; ¢1; o wi/we); (87; 12775 14°30%; 30°307; wi/wa}; ("5
Dy; 18°; 41°; 1.95); (5'; 16'; 20°; é.; 2.8); (97; 8.57; ¢1\§\23°30’;

0.92) _
wy _ 12 cos 30°30° ., R
Fxample: wy 8 ocos 149307 1.34 %)

PronrLen 7.3C. Machine Design. The efficicady/of a serew is given
by : R

tan o )

g = tan (a.‘—’hﬁ
where « is the helix angle, and’ %ﬁﬂ%%ﬁﬁ%’éﬂ"ﬂm‘gﬁe{ﬁcient of frietion.

Data: (a; ¢; tan ¢; E); (1.5% {012; E); (2.5° 7.5° tan ¢ B); (2°15;
¢; tan ¢; 0.22); (23",.¢ 082; B)

Example: Set hairline to 0\2 on C
Read ¢ =B on T
Then a A\p' = 8.4° L
Aligp jndices and set hairline to 1.5% on s3T
Plaﬂ&ﬂ 4° on T beneath hairline
Read E = 0.177 on I} at index of C

Pre LEM 73D, Mechanics. The angle at which maximum shear

oceurs 16 combined shear and tension is given by

1 S
6. = 2tan 33,

where 3, iz tension stress and S, is shear stress n the same units.

Data: (S,; 8i; 0,; tan 24,); (16,000; 37,000; 6,; tan 28.); (1700; Sy 17.5%;
tan 26,): (S,; 2300; 8,; 0.97); (4200; 1200; 8,; tan 26.)

Example: tan 28, = 37,000/(2 X 16,000} = 1.156
8, = 49.2°/2 = 24.6°
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Prosrem 7.3E. Mechanics. The acceleration of the crosshead on a
steam engine is given approximately by

o = ru? ((:03 ¢+ ;—-cos 29)

where r is radius of erank arm in ft, w is angular velocity of the crank in
radians per sec, 4 is crank arm position,  is length of connecting rod in ft,
@ is then in ft per seq?

Data: (r; w; 8; 1; a); (0.83; 4.5; 45°; 2.75; a); (0.83; 4.5; 105%, 275; a);
(1.25; w; 70°; 3.50; 1.85); (0.67; w; 60°; 2.50; 3.50)

¢\

Example: ¢ = 0.83 X 4.5 (ms 45° + %cos 90") . O
= 0.83 X 4.5 X 0.707 = 11.9 AR

.
Prosuem 7.3F.  Electric Power. In single phaﬁ}electrical eireuits the
power ig given by O
P = B cos 65"

where P is power in watts, E is effectwé Jolts across circuit, [ is current
through circuit in amperes, and LOS & I power factor, or @ is power factor

angle. 0N
www.dbraulibrary.org.in 2

Data: (E; I; 8; cos 9; P); (240 182 20°; cos 8; P); (E; 37.0; #; 0.78;
3320); (E; 21.9; 33%cos ¢; 8100); (550 1.77; 6; 0.89: P)

Example: P = 240 ¥ \iSE X eos 20° = 4100

ProsLEM 7‘3G..~'>_«chtric Power. In balanced three phase electrical
circuits the powét,is given by
N P =+/3EIcos 9
”\‘
where E%s fine-to-line effective volts and [ is eurrent in each line, cos 8
agam. ig\power factor.

B@t&- (8; I;8; cos 8; P); (13,200; 52.0; 15°; cos 8; P); (3900; [; 8; 0.92;
N/ 61,000); (F; 17.9; 29°; cos 8; 58,000); (132,000;
68.5; 8; 0.88; P)

Example: P = 4/3 X 13,200 X 52.0 X cos 15° = 114,800

Prosiem 7.3H. FElectrical Circuits. The effective
values of alternating currents are often represented as
Fig. 78. Com- vectors related to a liectangular coordinate system, Fig.
pogition of Elec- 7.3, and expressed either as I/ or as I, + jI,. The
tric Current vestor sum of several such currents is obtained by

Vectors - -
expressing all in terms of components along the
axes and adding.
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Data: (I1; o5 D) (4.8 +73.2; 7.7/62%; I); (57.5/27°; 152 + j1L.5; I);
(3.5/45%; I»; 75/86°); (I; 0.0087 — j0.09; 0.16/31% -

Bxample: I, = 7.7/62° = 3.61 4 ;6.8
T, = 4.8 + j3.2
J = 8.41 4+ 7100 = 13.05/50.0°

PropLum 7.31.  Electrical Cireuits. The equivalent impedance for
several impedances in parallel requires addition of their admittances (or

reciprocals) expressed in complex notation form. ~
' ] 1,11
2_Z+Z+Z3+’ ¢\
N\

Three impedances only are present in the problems appearing here:

Data: (Zy: Za; Za; Z); (17.7/45° 8.3/16%; 6.5/0° 2); (3.76/185 12.8/27°;
Z4; 2.95/25%); (68.5/12°; 23.0/10°%; 13/20°; 2); (LT85 4.7/57°%;
9.3/62°; Z) - O

i
Example: 1/Z; = 1/17.7 at /45° = 0.0565/257 -\
= 0.0399 — 70.0399
1/Z, = 0.1205/16° = 0.116 + 40,0332
1/ 7y = 0.154 + jovrww.dbramibrary.org.in
1/Z = 0.3089 — j0.0067,%.0.310/%24
7 = 3.93/1248 N
P\ Fig.T7.4.
Proprem 7.3).  BlectricalBngineersng- The voitage yoltage Drop
relations in an alternati& current circuit may be Vector Diagram

similar to the vectox d\i’dgfam of Fig. 7.4, or

N E=Ey— I
o) : 5050 . Ty
Data: By = ’13}200/50"; T, = 52/27% (2); U7 4 j34; 48/22°; 21 — 7165

35/61%)
oM .
ExamplyrZ = 17 + jo4 = 38.0/63.45"; Eo
1.7 = 52/27° X 38.0/63.45" = 1975/90.45°

- - 9.&5_5%137;5 4 f1975 = —15.5 + 41075
10,100 + j8480 — (15.5 + 11975)

_ 10,085 - 6505, or 11,900/33°

Proprem 7.3K. Structural Design The secant formula for maximum
deflection in & eolumn under eccentric loading 18

{ ’P .
Y, =esecy BT .(m.)

= 10,100 -+ 58480

i

E
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where ¢ is eccentricity in in., [ is column length in in., P is load in Ib, &
is modulus of elasticity in Ib per sq in., / is moment of inertia in in % the
angle then is in radians.

Data: B = 209 X 10% (P; I [; ¢; Y,.); (27,000; 18.6; 120”; 0.7; ¥,);

(48,000; 24.8; 180"'; e; 1.48); (P; 10.5; 144"; 0.9; 1.3); (85,000;
36.7;1; 1.2; 1.7)

120 27 X 108

Example: YV, = 0.7 X sec == 5 29 X 10° X 18.6

N\
= (L7 sce 0.424
or (N
e A\ N
0.7 >
= cos otz — 077 O

Standard numbers are helpful for placing the detfttﬁal point in the quan-
tity under the radical. It reduces to 5 X305, or 50 X 10-%. 'The
angle in radians must be converted to degree\;b Aor slide rule operation, and
0.424 radians = 24.3°, \

PropLem 7.3L.  Structural Design®’ The ultimate strength of an
eccentrically loaded column is glven by

wwwdblaullbralyopg v":‘l. P )

where P is load 1b, A4} ls\area of eolumn sq in., e is eccent.rlclty in in., ¢is
distance from cent\o ‘of gravity to extreme ﬁhcr in in., » is radlus of
gyration about a % bending in in., £ is modulus of elasticity in 1b per
8q in., I is length.of column in in., S is elastic limit strength of column
material. )

oM
Data (329 X 10%; (P e;1; A; r; c; S); (90,000 1.25; 120; 9.71; 1.94;
$.88; S); (P; 0.75; 180; 11 77 1.94; 5.97; 15,000); (145000 1.75;

193 19.11; 3.02; 6.06; S) (23000 050 168; 4.62; 1.45; 3.00; S)

\The ﬁrst set of data reduces to
S = 09280(1 4 1.62 sec 0.553)

or on converting radians to degrees

8 = 9280 (1 + - 162 ) = 26,900

s 31.6°

Proprem 7.3M. Machine Design. The moment transmitted by 2
WOTm gear is given by

_ tan « -+ f/cos 8 .
M,=W (rm T — J tan a/cos § -I—fcr,,) {in.-1b)
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whers W is load in Ib, r,, is the radius of the screw thread in in,, 8 is the
angle between the thread face and plane perpendicular to axis, e is helix
angle, 7. is radius of bearing collar in in., f is thread coefficient of friction,
§, is bearing collar coefficient of friction.

Data: § = 14 1/2°%; f = 0.015; fo = 0.010; {ra; W; aj tan a; 7] My;
(2/3; 500; @; 1/4r; 1.75; My); (0.50; W; 4°85'; tan e; 1.25; 96);
(1.25; 1100; «; 1/5m; 2.50; M)); (1.25; W; 6°20°; fan «; 3.00; 200)

2 1/4r 4 0.015/c0s 145° | 4410 5 1‘75)

Example: M; = 500 (g — 0.015/4x cos 14.5°
= 40.5

O\
A\
7.4. Logarithmic and Exponential Calculations. ProBLEM - 7.4A.

Thermodynamics. The work done in an isothermal procegs;{s given by
"

Wy = 144P,VIn Jg—* (ft-1b)
1
Y,
. N
where P, is in 1b per sq in., V1 and V, are in cu f£.¢
Data: (Py; Vi; Ve Wa); (1255 8.7; 19.5; Wa); (Pui 485 13.5; 8000);
(250; 2.5; V3 9000); (520; 4.2; 1555 x)

www.dbratﬁg}‘al'y-%m
Examp]e: WK= 144 X 127 X 3.7”}.'11'—3—;?" = 11.25
19.5 _ 5.27;In 527 ‘T:_’\l'aﬁ
37 L\

The product of four numbers is obtained faster by using inverted seales
along with direct, and\n’this example folded seales also mean less move-

ment of the slide‘."\f'\"

Set hairliu&ztb‘l.ﬁﬁ on DF o
Move glidé to place 127 on CTF beneath hairline

Set-Hairline to 3.7 on C
Plageé 144 on CI beneath hairline
Read 11.25 on D at index of CT
PropLEy 7.4B. Thermodynamics. For a polytropic process the rela-
tionship between pressures and volumes is

(7

P 2 Vl

where P,, P,, are initial and final pressures and Vi,
final volumes.

Data: (Py; Po; Vi Vai m); (75;900; 65 Vo3 1.41); (Py; 650; 14; 140; 1.41);
(850; 240; 1.70; 4.50; n); (675; 125; Vi; 4.50; 1.31)

Vs, are initial and
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7 Vg _ 75 1/1.41
Example: 500 = ( ) or Vy, = 6(900)

Vo = 6(0.0833)%7 = § X 0.172 = 1.03

ProerLeEx 7.4C. Machine Design. An empirical equation giving the
permissibie power transmitied by a worm gear is
9.5C17
= 0 h
hp ®+5) (horsepower)
where (' is center distance from axis of worm to axis of gear.ighin., R is
velocity rafio of worm and gear,

O\
Data: (C; R; hp); (7; 12; hp); (C; 10; 30); (15; 18; h;v);‘(@; 8; 10)
Example: Ap = 9.5 X 7V7/17 = 9.5 X 27.5/17 = 5 35

Proeuem 74D. Heat Transfer. Heat conduc?ion through cylindrical
surfaces is given by \
o

¢ = k(T = T3 (Btu per hr per ft}
VoRere lﬁglﬁ%&rbmsﬁe inner ap&j’bl'lter diameters of the shell, T, and T

ave inner and outer temperatlires of the shell in degrees F, & is conductance
of the material in (Btu— r—degree ft)—L

Data: (k; T1; Ts; 2,9’) (0.0375; 380°; 80°; 27 45 ') ; (1.5; T'1; 80°;
457 100 0022 360°; 70° 4" Dy; 250); (35.0; 400°; T2; 35
57 180)
<2 X 0.0875 X 300 2r X 0.0375 X 300
E le:gl)= = =
XamRY \9" In 2 0.693 102

O\
ProsLem 74E. ~ Heat Transfer. The relationship between Nusselt's
number Reynolds’ number and Prandtl’s number is given by

< (Nu) = 0.33(Re)o-5(Pr)

Data: (Nu; Re; Pr); (Nu; 8000; 6.3); (1340; 10,600; Pr); (1100; Re;
3.5); (5100; Re; 1.5)
Example: (Nu) = 0.33(8000)°5(5.3)%
=033 X 220 X 1.85 = 134

ProBLEM 7.4F. Electrical Transmission. The inductive reactance
to neutral for a three-phase open wire line is given by

X = 2xaf8 (0.322 In —? + 0.0805) X 108
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At f = 60 cycles per sec this reduces to
X = (0.1213 1n$ + 0.0303)S (chms)

where D) is equivalent spacing of conduetors, r is radius of conductor, 8
ig length of line in miles.

Data: (D; r; 8; X); (120; 0.230; 45; X); (180; 0.5676; S; 52); (D; 0.706;
36.3; 37.5); (210; r; 25.0; 19.1)

Ezample: X = (0‘1213 in %22% + 0.0303) 45 O\
= (0.76 + 0.0303)45 = 35.6 O
PronieEM 7.4G. Heat Transfer. The logarithmic mean ntt?fﬁi)erature
difference is given by "
. T Ty ’
AT = - T, A
Tz - Nt

where T, and T, are shsolute temperatures, %0 ény scale. Find AT for
the following pairs of temperatures: (gg{gf’R; 650°R); (1800°R; 1400°R);
{500°R.; 420°R); (1250°R; 749‘\’-3#)‘dblia}iljja"1‘ary.org.in

920 — 650 _ 200" _ 270 _ .on

Example: AT = o0  Inh416 © 0.348 -
N =5 s\ J
650 A\

Solution for AT is stra,igh't:fOI'Wﬁl'd: although subtraction, divlision, log to
base ¢, and another division are required. If AT and T are given, T, can
be fournd, but only by trial, or by plotting a graph of AT versus Ty and
reading from the'gtaph.

g ,\}’I\?\g p s 1

ProsLew RAH.  Thermodynamics. The polytropiec work of expansion
is givepby)
3 "
N\ = 4PV [(Zg)‘ _ 1] (#t-1b)

1 —n Vl
where V,, Vs, are initial and final volumes in cu ft, P is initial pressure
in 1b per sq in.
- . - . C . . 21.
Data: (Py; Vi Va; n; W); (290; 4.0; 15.5; 1.26; W}; (Pi; 3.5; 18.0; 1.21;
160,000); (160; 6.2; V33 1.30; 125,000}; (210, 5.5:21.0; 1.30; W)

290 X 4 [{15.5y"*°
Example: W = 1-44—12-(_—?—2%"— [(;I“O—) —1

144 X 200 X 4 [ _ (ﬂ)“-“]
= 036 15.5 :
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0.258%2¢ = ().704

£.0 oo
15.5
o M X 2900>2<60 296 X 4 _ (90,000 ft-11

If

ProsLem 7.41. Electrical Engineering. The {trausient current on
closing a circuit containing inductance and resistance is given by

K
I = ..__(1 — gEE) N\
where E is pofential in volts, R is resistance in ohms, LA 15 mductance in
henrys, { is time in seconds. 3\ ™

Data: (B; R; L; ¢; 1); (120; 16; 0.07; 0.004; )3 @40 75 0.40; t; 3.7);
(375, 40,L 0.010; 4.2); (E; 1.27; 0.0143 0})06 2.2)
—16.%0.004 \
Example: I = %%—0(1 —e 007 ) ’xi\\“
-
= 7.50(1 — g1 = 7.50(} — 0.40) = 4.50
ProerEM 7.4J. Electrical E:ftgﬁi-n’éering. The maximum electrical
sgradientdnsarinsulabed cable isigiven by
o Eo= ER
AN rin=—
) r
: N .
where B is maxhbmum potential between sheath and conductor, & 13
inside radius oisheath r is radius of conductor.

. Data: (E;7, ;r Es); (45,000; 2.3; 0.23; Eq); (B; 1.6; 0.38; 75,0001
& Y00; R; 0.86; 95,000); (18,700; 20?’40000)

O 45,000 45,000 45,000
ol l By = = ! = 2
_Taadiple: Ko 23 T 02310 023 X 230
O 0.23 In

If r is to be found, as in the last set of data, a frial procedure is required.

Prosuem 74K, Fluid Mechanics. For turbulens flow Reynolds
number, N, and frietion factor, §, are related by

1 .
—— =2log N —~ 0.8
‘\/f_ & \/f_
Data: f = 0.04; 0.06; 0.08; Nz = 50,000

1
m = 210g \/0.0‘4:NR — 08
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This reduces to
log 0.2N, = 2.900; or, Nz = 3970

If Nz is given, as in the last item of data, a trial solution or a graph is

needed to find f.
ProrLEwM T.4L. Fluid Mechanics, Thermodynamics. The eritical gas

pressure in a nozzle is given by

_p( 2y
P.=P(2y)

where P is nozzle entrance pressure and k is a function of the gas useri\\

Data: (P; Gas; k; Po); (150; Air; 1.41; Pa); (220 ; Argon; 166J P“) (P;
Air; 1.41; 116) (P; COy; 132 av.; 60) N

%7

2 141 \\
Example: P, = 150( )0 1. 150(0.83) %4 = 79 O

141+ 1 O
PropLEM 7.4M. Thermodynamics. ' The the:{m\al efficiency of the
Otto cycle is given by O

1»
n=1- f.b—l

WW W dbrau'hbl ary.org.in
where » is compression ratio and k isst.41.
Data: (r; n); (5.1; n); (8.7; n)J Qa, 0.62); (r; 0.71)
Example: n = 1 — 1/5.1% $&0.487

" ProsLEM T.4N. T@modynamws. The thermal efficiency of the
diesel cycle is givep\b.y‘

:"\.;’ k—1 B
N o, 1f1 [1 —r
"'.f'\ n=1=g\ 1—r

where k\ls\l 41, r is compressjon ratio, r. is cut-off ratio.

Data:\ ros 1); (8.0;0.059; n); (r; 0.04; 0.55); (10.0; 0.072; n); (r; 0.06;
0.62)

Fxample: n = 1 — Sz (12 0.0591-41)
e 14T \ 1 — 0.059

0.426 (1 — 0.0184) _
T4l ( 0041 )_ 0.684

ProsLEm T.4P. Fluid Mechanics. Pressures for a fluid flowing in &
pipe are related by

PE_Pz"VIPI[z] V2+fl]
1 g
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where P, and P, are exii and entrance pressures in 1b per sq ft, ¥; and ¥,
are exit and entrance average velocities in {t per sec, v, is specific volume
in cu ft per lb, f is friction coefficient, ! and D are length and diameter of
pipe in ft.

Data: 21 = 3.33; f = 0.012; g = 32.2 ft/sec?; {i; D; Vi; Vo, Py; Py);
(5000; 0.5; 18; 16; 9000; Ps); (4000; 1.0; 25; 23; 11,000; Ps);
(8000; 0.75; 32; 30; 15,000)

182 X 9000 16 , 0.012 X 5000
. 2 2 _— kbt e /6,
Example: P, 90002 + 35,5 % 3.33 2 In 18 + 05 .
= 81 X 105 4 27,200(—0.236 + 1200 <\
Py = 9180 O

ProprEm 7.4Q. Electrical Engineering. For'ejléctgl"‘ically long trans-
mission lines NS -

By = Ez cosh A/ ZY + I, \/{Zﬂ’ sinh +/ZY

where Es and Ej are sending and recetving end voltages, I is receiving

end current, Z is series impedance df lihe, and ¥ is shunt admittance of

line. A3

www.dbraulibrary org.in N
/ S AR

7 N Y ER E_g IR
40 + 7250 §O.0016 . 300,000 + jO 200 — 4100
40 4 7250 ©.0004 —t—ijQxOOJ.G 300,000 + jO 300 — 7150
80 - 7500 j0.000&\" 300,000 4+ 70 200 — 7100

Example: Thesolition of this problem with its complex hyperbolic fune-
tions requires atiore slide rule manipulation than appears at first glance.
The progp\dﬁre is indieated in some detail.

zﬁ JO.0016(40 + j250) = —0.40 + j0.064 = 0.405/170.9°
_(VZY = /0405 /170.9°/2 = 0.636/85.45° = 0.0505 + 70.616
Nz 253.2/80.9° |
Y 0.0016/90°
VZ]Y = 398,/4.55°
Es = 300,000/0° X cosh 0.636/85.45°
+ 224/26.5° X 398/4.55% X sinh 0.636/85.45°

= 158,000/9.1°

The hyperbolic funetions of complex angles may be reduced by tbe
following identities.

cosh (@ + jb) = cosh a ¢os b + j sinh a sin &
sinh {¢ + ) = sinh a cos b 4 J cosh a sin »
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thence
eosh (0.05056 + 70.616) = cosh 0.0505 cos 0.616 + 7 ginh 0.0505 sin 0.616

and
oo 00305 = C e L0818 00510

(1.0518 — 0.9510)
2

1

sinh 0.0505 =
0.616 radians = 35.4°

The number e raised to bath positive and negative powers cal be redd)in
one setfing from slide rules on which all LogLog scales are assomatgd with
the D scale. For example, using the stide rule of Fig. A.3 :”7«.

Set hairline to 0.0505 on D W’\'\'
Read 29505 on LL1 : N\
Read 0955 on LLOA )

cosh 0.636/85.45° = 0.865/18-4 4°; sinh 0, 636)(83 45° = 0.581/86.2° '

Now
Es = 300,000/0° X 0. 8()5/18 4" + 51,900/54.4" 4°

= (246,000 + 81 pumhtﬂhr@(;,zg% 4 j42,200)
= 303,000/24.2 2\

ProsreMm 7.4R. Electru{}{ Fngineering. The currents in electrically
long transmission lines suoh as those of Problem 7.4Q are related by

I = IJ; cosh A ZY + (—-—-—-— sinh vV Z

Tor the exam’f}e in the preceding problem
300,000,0° X 0.581,/86.2°
— S

e A o o R
Is\= 203 2/80.9° % 0.865,/18.4” + _-—HBQS‘@_{)?

4

= 218.5/08.: 3° + 438/90.7: 75°
= (—35.3 + j215. 7+ (=57 + j438) = 654/93.6°
In a similar way Is ¢ data in the
preceding problem.
Propuem 7.48. Mechanics.
in a catenary expressed by

8
¥ = C(cosh20 1)

T

.. S
L=208111h§'c—,

may be calculated for the other seis ©

The long uniform suspended cable hangs
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where S is span, y is sag, . is length, and € is a constant, all being in the
same units.

Data: (S; C; y; L); (2000; 2000; y; L); (2000; C'; 400; L); (4000; 3000;
y; L)
Example: ¥ = 2000(cosh 0.5 — 1)
= 2000 (1—64%(@ - 1) ~ 254
4000 sinh 0.5 = 4000 X 0.521 = 2084

L A
If Sand L, or S and y, are given, as is often the case in practicalproblems,
a succession of trials or plotting a graph is necessary t-o.ggi’ui\n the other
quantities, W
So-called ““Vector” slide rules on which the stnh organh can be read
directly without addition or subtraction of terms are’helpful on problems
such as these last three. R

7
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A.2. Scale Equations. It is mentioned several times in the pages of
this book that the straight slide rulc operates by subtracting, adding, or
equatinglengths. Thus, if the funetions used for constructing the various
scales of & slide rule are known, these can be subtracted, added, or
equated in accordance with the particular operation used, as a means for
determining the equations solvable on that slide rule. And alse, it is
possible with certain slide rules to interchange slides. The above pro- .
gedure will determine the types of problems solvable on such a hybrid
slide rule, ~

The operating statements given in the several chapters are\ihtended
as a guide to those whose mathematical training may be lilaited at the
time the use of the slide rule is studied. As mathematﬁai knowledge
increases, more abbreviated operating statcments are undcrstandable and
may be more convenient. Hence, operating mstru( tions in the form
of the sealc equaftions can be put on one page, fm‘\sjl of the commercial
slide rules of Appendix A.1. If these equatignd hre transformed, elimi-
nating the logarithms, they will be in the msh*e usual form.

Several examples illustrate the way in x%shwh these tables may be used.

If numbers are set on an LL2 scale; and reading is made on & D scale,
equating the two construction equations gives

www . dhraulibrary.org.in log (10:1n~ _\f) = log X:

or &

74

O 10N =X
«

which if written with the scale names as subseripts is

'\‘\ lIl NLL2 = 01X1;
or 'S M
'§‘.

. N\ FLENE gEee

Thebamc range of X in the scale equations is from 1 to 10; or for numbers
}n the LL2 scale In N lies between 0.1 and 1.0,

If lengths on an 8 scale are added to lengths on an A scale and the sum
read on LL3

log (In N) = %log X + log (10 sin A°)

or
In N = 10X% sin A°
Nizs = e%V%a 5in 4,

The basic range of X on the A scale is from 1 to 100.
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LogariTMIC ScaLEs!
Scale Name Cq;:wtru.clzon Scale Nome C(msﬂrm::timz,
Eguation EBgualion
c,D log X Ry +/ (low); Z2log X
CF, DF log X +logx | R~/ (High)| 2(log X —log v/10)
C¥/m, DF/nM log X —log e K %log X
CI, DI log 10 —log X | ~/ (Low) 3log X
CIF log %’ Clog X | & (Middle) | 3dog X —log ¥IOP
A B 5log X & (High) | 3log X — log K100
TRICGSOMRTRIC SCALES® R N
N
ar ! Construction R '"‘;\Constmcia'o-n
Scale Name i , . Seale Name } .
Fyuation Egquation
*a 5 108 (100 sin A4%) S, B2 (compIN> log (10 cos A°)
ST, 81 log (100sin 4% | T (direat)\69-45° log tan 4°
BT, 81 (comp.) ! log {100 cos A°) 1T (l;lit"{:et) 45°-84° log (0.1 tan A%}
g, 82 | log (10 sin 5% dbl-RERy) A8 3 — log tan 4°
* Pigs. A1, A.2, N Fig. A5
Untrortrdwb LogLoe Bcanms?
. AT Comstruction N Construction
Seale Name Banabion Seale Name Fquation
L O LL. + Jog (1010 &)
N \I:\Rjg log N N: log (100 log N}
LL3 N\ log In ¥ LL1 log (100 In N}
/N« W —loglog N 1/N: — log (100 log ¥}
1103, KI/3 —logln N Lo, LL/1 — log (100 In N}
LL\\§ - +logln N L, + log (100 In N}
Ne log (10 log N) *LIO log {1000 1n N)
1.L2 log (101In N} LL/0 — log {1000 1n N}
1/X, _ log (10 log N) LLO (left) — %log (100 1n V)
1102, TL/2 | —log (101n N) LLOG _ élog A00 In N)
* Fig. A.T. t Fig. A.8.

1 Decimal point in X may be moved at will when operating with other logarithmic

scales,
¢ The decimal point may no

the dircet sine scales.
& The degimal point may not be move

t be moved in angle values except for small angles on

d in numbers on the TogLog seales,
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A.3, Adjusting and Cleaning the Slide Rule. When purchased, the
slide rule should be in adjustment and should be clean. It is undesirable
to tinker with it unless necessary.

If the slide rule is dropped it may be knocked out of adjustment.
Occasionally, weather changes make adjustments necessary. Sometimes,
though rarely, screws work loose and require tightening.

The accuracy of alignment and looseness of the slide should be checked
first. If the bracket screws on a duplex slide rule, Fig. A.9, are loosened,

Q"

N

Fﬁj '\' \..'\

@
) %

&

Ny

J Y

O j"f“
www.dbraulibrary.org.in \;l,lﬁ - —_"_"gj

Fig. A.9. Duplex Slide Rule Showing Bracket Screws
o\
the upper bar of the B‘Qim’e may be moved slightly to change the separation
of the bars, or lengthwise to align scales on slide and frame. 1f adjust-
ment of separativpn’only is required, it is best to loosen one end at a time;
the alignme&t-:if} then not disturbed. The separation should be adjusted
to permit.€dsy movement and setting of the slide, and vet the friction
should.Qé enough to prevent slide movement, unless it is intentional.

Sarifctimes it is possible to overcome warping of the shorter har of the
1 }';l,lije. Loosen the bracket screws; spring the bar more than is necessary

\t(} make it straight; tighten the serews while holding the bar in the sprung
position.

The hairlines should be checked after the frame is adjusted.  If hair-
lines on both sides do not line up with end graduations, it may be possible
to loosen the four screws in one glass only and move that glass a little to
obtain alignment. At times only two screws on front and back of one
corner of the glasses need be loosened to adjust the hairlines, I all eight
serews in the runner are loosened at onece, it is much more difficult to get
both hairlines lined up to match the end graduations on both sides. A8
graduations to check the hairline with, the indexes on the I, AR, v,
and K scales should line up with « on the DF scale and 0 on an L scale.
Also, ¢ and 1/e on the LogLog scales should be aligned.

|
(M
|
J 1/
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Jf a slide rule iz in adjustment and it is necessary to clean under the
glags, remove only one glass and slip the runner off the frame,

A damp cloth is suitable for cleaning a slide rule. Iirasers or chemical
means are undesirable because they may damage the surface and make
the graduations less distinet.

Lubrication of the slide rule should not be necessary. Once in a while
for wood-base slide rules, talcum powder in the grooves may be helpful,
For metal slide rules, carbon from a soft pencil may serve the same
purpose. Q

Adjustment of the Mannheim-type slide rule is easier than for the
duplex rules. If the frame is adjustable, there are usually four, sorews as
shown in the partial drawing, Fig. A.10. These screws may bevoosened

a
s D

e
N\

% )

www.dbraulibrary orp.in

Fig. A.10. Mannheim-Type §Ii’dé Rule Showing Adjustment Screws

one or more at a time to chh:n%c the scparation of the upper bar on the
frame. If endwise movp&t of the bar is needed, all four screws must
be looscued at once. .4\

The glass can ofténbe adjusted on a Mannheim-type slide rule in much
the same way gg?f\o"r the duplex rule. The fewer screws and only one
glass make th\s & simpler task. The glass usually will slide off the end
without diﬁsga%embly, making it easy to clean on a Mannheim-type slide

¢

rule. 08

\m )
A,

A.4, Answers to Problems
Chapter 1

1.7. Scale Reading

1A 1B 1C 1D 1E
a 5.00 2.50 0.09 9.90 9.95
¢ 1.25 1.26 1.65 1.515 243
e 7.70 2.34 3.16 1.063 472
g 1.7 7.14 3.40 4.60 1.96
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1.12. Division
1F 1G 1H 11
a 1.75 1.64 1.383 4.14
¢ 0.550 24.0 0.131 0.0403
e 850 0.227 233.59 626
g 3000 0.247 0.0306 0.0557
i 5240 614 6.2 91&
k 142 0.00717 170 0.0002
1.14. Multiplication
iK 1L 1M
a 510 9.30 6.21
¢ 910 6.25 3.025
e 0.0975 30,900 755
g 270 27.0 00131\
i 1010 209 213 000
k 281 463 286“:00
%mﬂp&)él%hbral ¥.0r i90135 3 6370
0 2.48 X 108 “‘;'; 302
q 3.92 X 10° 878 7570
s 0.00764 00112 2470
1.17. C‘ontlnued D\\llswn and Multiplication
1P 2O 10 iR
a 1.24 .\}\"' 3.52 3.00
¢ 0.5360) 00321 0.02565
e oeof}oq 10.23 1.067
g\187'o 4.68 1.99
N0.0912 707 222
k 1.327 0.2375 0.184
m 2.66 0.1274 129
o 42 000 3.72 X 10¢ 2990
1.22. On Chapter 1
18 1T U
a 1.0985 835.0 1.149
c 617.06 10.564 38.71
e 0.00190 1.075 12.2
g 3.33 253 0.267

1¥
32.3
0.239

0.001285
48.1

188
28 ‘384
ne \
A
1N
36 7

\ .'113\0834

11.0
4.00

464
27,600

100,500
5.18

52,1
373,000

1v

0.014585
749.7

113.7 X 107°
52.8
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18 1T 1U v
i3.01 0.958 1280 1000
k 305 762 10,860 106.8
m 0.01693 0.01034 0.018¢ 0.00200
0 13.5 45.0 158 X 107 1.14
q 91,200 0.205 1.097 304,000
s 0.643 63.5 X 10° 1.375 X 10~ 63.0
1w
a U =0518;V =728, W = 0.133
¢ U = 0.001587; V = 40,200; W = 163,300 A
e 5.33; 0.300; 14.67; 123 D
g 96.8; 386.5; 760; 200 %)
i 0.0322; 99.5; 0.270; 0.00944 RN
k 0.00953; 0.003545; 653 X 107%; 0.0906 ,\:.\,\
Chapter 2 ” v
2.5. Squares and Square Roots \y
wiwrw . dbr auhBhu ¥.0rg.in
24 2C 2D
a 1.5625 0.406 0.0757 12.48
¢ 0.240 209 () 204 7.085
e 114.3 005" 0.552 0.4857
g 81.9 ,2046 2.31 X 10~ 32.93
i 0.1537 ‘\u 35,06 1304 0.0768
k 604,000 ((\Y 9.62 467 X 10-° 10.54
m 7.84 X 164 5.665 0.0219 1.455
0 66] \ 29.9 67.7 16.22
23\ Cubec; and Cube Roots
2E 2F 2G 2H
a 14.17 1.026 381 2.02
¢ 0.001406 5.595 0.576 7.88
e 710 0.229 0.225 0.806
g 812,000 17.4 266 0.1932
i531 X 10 . 339 33.7 12.52
k 1.26 X 10° 411 1906 2.122
m 98.0 0.461 620 X 10° 5.39
0 13.48 2.587 0.139 0.0646

195
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2.12. On Chapter 2

21 2] 2K
a 16.383 2.8755 49.215
¢ 1.8697 0.394 1.195
e 19.559 74.52 0.742
g 675 0.45267 1.054
i 56.31 2.064 6.625
k 4.718 8.46 3.06
m 40.7 14.8 3.235
0 1275 3.36 8.20
Chapter 3
3.6. Sines and Cosines \ ’
3A 3B 3C 3D
a 0.500 0.939 00401 0701163
c 0.292 0.0262 0.660  \V0.613
6 0:62braulibr§0384in 0002070 0.891
g 48.6° 13.3° 201.75° 0.38 rad
i53.5° 4.70° _180'8° “1.017 rad
k 9.5° 0.40°0  (Ais2a2° 0.0802 rad
m 26.8° 0.35° \'\’\«’ 234.2° 1.326 rad
o 0.500 0.0784 0.22 0.344
q 0.682 00745 0.0314 0.0209
$ 0208  ,0:50 0.464 0.99
u 68.0° N\ 88.0° 115° 1.277 rad
w 82.0° " 79.0° 96.6° 1.654 rad
&é;\'"i‘angents and Cotangents
3F 3G 3H 81
a 0.249 1.19 2.648 0.949
c 0.7265 0.625 15.97 1.26
e 0.096 2.356 1.437 0.070
g 32.0° 17.0° 39.3° 0.346 rad
i 52.0° 83.5° 108.0° £.043 rad
k 48.0° 88.0° 125.0° 2.78 rad
m 13.25 6.90 1.745 0.0349
0 22.0 2.42 12.5 0.136

APPENDICES

3E

0.987
0.1563

—0.995
7.0°

21.2°
14.8°

2.7°
0.94

-0.99
—0.98

18°
85.0°

3J
—0.364
—0.649

0.364
65.75°
40.7°
82.4°

0.532
0.675
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3F 3G 3H SI 3]
g 38.2° 1324° 1.536 rad 78.15° 65.3°

s 70.2° 5.12° 0.634 rad 86.56° 37.6°

3.14, On Chapter 3

3K 3L 3M 3N
a 1.004 1.023 16.4 6.22
¢ 5.75 43.0 1.035 2.71
e 85.76° 88.79° 30.7° 3.7° O
g 83.9° 29.7° 1.53° 13.77° | A
3K 3L O
i b:72;0:75.3 A:31.4%; 6:100 A
k B:20°; ¢:0.938 b:135.3; c: 155 LV
m 5:3.94; ¢:56.32 B:9.95°; b:521.95 v
0 a:7.76;¢:10.3 £:59.6;5:59.5 :'.\\';
3p p 'l\ 3Q
a ¢:22.8; A:29.4°% C:11065,, dblauh%%gy ; gl}’n"’ B:67.5°
¢ a:2.79; ¢:0.875; A:100° @17 '71.0; B:50.5°
e b:146.5; B:168.67% (:7.33° NV e:15.2; B:78% C:57°
g b:140.5; ¢:115; B:120° Q a:44.8; ¢c:58.1; C:48°
{ o072 B1605% €703 (O e:BTT; A:123°%; €:130.8°
k 2:21.9: b:7.75; A1101.5% b:74.9; A:3.67°; C:80.2°
3R 2\&8s 3T
a 0.076 ,,{}0.466 0.217
c 40.9 § 1.76 10.55
e 0987 W\ 0.972 0.916
g 0. Q:{?Z} 0.265 5.88
i 0757, ete. 14.13, ete. 0.0152, ete.
k 22.5, ete. 48.25, ete. 136, ete.
Chapter 4
4.3. Logarithms
4A 4B 4C 4D
a 0.342 0.806 — 10 3.433 7.964 — 10
¢ 2.274 8.466 — 10 1.544 8.613 — 10
e 1.82 0.148 1130 0.0263

g 86.7 0.436 b75 0.00363
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4A 4B 1C 4D
i 0.336 —2.50 8.57 -1.01
k 6.33 —0.0725 6.44 —4.96
m 24.5 0.198 2.90 35 X 104
o 1.19 0.440 18,000 0.9607

4.5. Powers and Roots

4E 4F 4G 4
a 153 0.396 3.42 0.0002
¢ 41.5 0.0008 5.70 0.4925
e 2.99 0.9264 1,518 0.883
g 1.174 0.005 1.0334 10960
i 1.01635 0.9262 1.01465 0. 034\»
k 23,000 0.9657 120 305X 1073
m 41.0 71.0 0.038 It X 10-9
o 1.223 1.26 0.9917 \ 0.614

Y
4.11. On Chapter 4 QO v
WW W, ﬁ braulibrary, 43.1‘ g.in %K:i}’ "
a 3.04 3.32 0864 09893
¢ 0.388 1083 o 0.828 0.458
e 110 70,0 366 0.0437
g 0.940 1. 125\ 0.56 1.034
i438 3»30 24.7 412
k000  ONZ.0425 0.226 1.517
’\
{;}‘
O
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A and B scales, for division, 21
Accounting, division and multiplication
problems, 143
Accuracy, 26-29, 48, 136
LogLog scales, 76, 129
meaning of, 26-29, 48
Addition, slide rule for, 4
Adjusting slide rule, 12, 192-193
Altitude-right triangle method, 102
Angles:
basic angle range, 112
gomplementary angle,
tungent scale, 94
posines, 91, 102, 103-105
cotangents, 98-99
reading values of, 115
sine of, 58-89

marking of

tangent of small, 97
Antilogarithms, seale settings for, 120
Approximating numbers, 26-29 .\
Arnold, J. N, 1n ¢ 2\J
A seale, 7 O

LogLog seale and, 128 7

geule settings, 57 O

simple powers and mbf‘s, 55
Atmospherie pressuis,logarithmic and

exponenti\al'balculations, 164

Basic principles, L (see alse Principles)
Bridges aneifansmission linea, problems
»in%ving simple powers and roots,
1§2-163
B seale
inverted, 37
simple power and roots, 55
sine scale, 87
trigonometric scales and, 87
Business, division and multiplieation
problems, 143-145

C and D scale:
aecuracy of, 27
arrangement, 127
continued division, 20-36
nmmerieal problems in, 36
continued multiplication, 20-36

C and D seale {(cont.):
numerieal problems in, 36
division, 13-16, 19-21 'S
multiplieation of two numbe{’s\ﬁé—-m},
49 \
rclationship between Laceies and, 119
seale dosignations aad cyele lengths,
a6 €
squares of numbéi‘s,\ﬁﬁ
“enter-drift \method,” 46n
CT and CIF scdlds, reciprocals of num-
bers, S8~
OF and DR stales, division, 21
CF scalen?
folded, 44

www.dbraulibfadsxp®l.in

OF 7w scale, 7
tangent of large, 96-97 LN folded seales, 45, 130
“3 ¥ Chemistry:

phyaical:
logarithmic and exponential caleu-
lations, 154-155, 156
trigonometric caleulations, 153
problems relating to, 149-156
simple powers and roots problems, 152-
153
CI and C and D seales, multiplication,
33-34
CI and D scales:
division, 39-40
multiplication, 36-42
squarcs of numbers, 62
CIF scale, 7
folded seale, 48
Circle areas, 78-79
C1 scale, 7, 36-40
division, 39-40
LogLog scale and, 132-133
multiplieation, 33—34
negative property of, 37
principle, 37
reciproeals of numbers, 38
reciprocals of sine and cosine, 92
soale reading, 11-12
simple powers and roots, 76
tangent scale and, 93
Cleaning slide rule, 192-193

199
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Commoereial slide rules, 7

data on, 181

scale equations, 83, 190-191

types of, 182-18%
Common factors, 50-51
Compulations:

determining shortest method, 11-44

increasing aceuraey in, 26-20
Correction number method:

defined, 17

multiplieation, 23

simple powcers and roots, 83

aquares and square root, 64
Coszecants, 92, 113
Cosines, 91

coroplementary angle marking for

gine scale, 91

law of, 102, 103105

preblems on, 92-93

scale settings for sines and, 88
Cotangents, 93-99

diagram of scales for reading and

Dreci-Loglog (cont.):

folded seales, 45
fold point for LogLog Scales, 128

Decimal peint location, 16-19, 48, 51

continued division and multiplieation,
C and 1) scales, 31-33

correction number, 17

cubc of numbers, 69

cube root, 71-72

fractional powers, 7475

LogLog seales, 129

mulfiplication, 23-26

other simple powers and 100tq\ 73-76

similar simple number zeheme, 18-19,
51 s\

simple powers and 160t%, 83

squares and square root, 60-61, 63 -64,
83-84 4

on folded and non-folcled seales, B4

standard rmfnbm method, 17, 19-20, 51

tangentg) 6y

trigon\metric seales, 113

settulg, complementary T scale, 98 DT seflc”7

problems in, 99100
C seale, 7
graduation plan, 7-8

inwertdlEat Qﬂlﬂl’ﬁ}?%r@g‘ iprocals, 38 A

TLoglog and, 132 o\
regiproeals of numbers, 38 N
setting numbers, 11 N\
bimplc powers and roots, 55776
sine and cozine read on, 9}\92
tangent scale, 87, 93 € J
trigonomelric hmlm H, 87

Cube of numbers, 67270
algebraic equationd; 67
decimal pointAeeation, 69
method of gperation, 67-68
numerical*problems, 72 -73
one-digit rumbers on folded scales, 68
one- (h numbersg on nen-folded seales,

,Q‘libé root 70-72
‘H,Tgohran, equation, 70
deeimal point location, 71-72
K or 4 =cale, 70
method of operation, 70-71
numerical prohlems, 72-73
trigl method, 72

Cube roat zcales, 55-56, 70
finding cube root, 71
method of operation, 71
seale designation and eyele lengths, 56
scale settings on, h

D and DI seales, reciprocals of pumbers,
38

Deci-Loglog, Model No. 2, 7, 130, 181,
186

folded, 44

I:)lf /i seale, 7

folded seales, 45, 130

DI seale, 7
Division:

C and D scales, 13-16, 19 -21
CF and DT seales, 21
CI and D scales, 39--40
common factors in, 42-14, 50-51
continued division:

C and I seale, 29-36

folded seales for, 46

reversal of indices, 30
folded seales for division by =, 44
introduction to, 13-16
logarithmie prineiples for, 3, 13
numerieal problems in, 21
principle, 14

alternate index, 15
recognition of scales for, 6, 48
simple powers and roois plus, 76-82

Division and mulliplieation:

aceounting problems, 143

chemical and physical problems, 149~
156

engineering problems, 157-161

insurance problems, 144

investment problems, 144

statistical problems, 145

D scale, 7

cube roots, 70

graduation plan, 7-8
LegLog scale and, 128
reciprocals of numbers, 38
setting numbers, 9-11
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D seale (eont.):
simple powers and roots, 55, 76
square rool, 55
tangent scale and, 93

Dunlap, Jack W., 143n

Duplex type slide rule, 3—4
components of, 4

Tlectrical cireuits, trigonometrical ealen-
Jations, 168, 169
Electrical engineering:
division and multiplication problems,
160-161
logarithmie and exponentisl caleu-
lations, 174, 176-177
simple powers and roots, 166
trigonometric caleulations, 169
Flecirical transmission, logarithmic and
exponchtisl caleulations, 172-173
Flectricity:
divisien and multiplication problems,
150-151, 159--160
gimple powers and roots problems, 152
trigonomoetric enlenlations, 153
Electric power, trigonometric valoula-
tions, 168
Engincering:

201

Tinance, logarithmic and exponentisl eal-
culation problems in, 147-148
Five-inch slide rule, graduations, 9
Fluid mechanies:
divigion and multiplication problems
related to, 159
logarithmic and exponential caleula-
tions, 174-176
simple powers and roots, 164, 165, 166
Fluid meehanies bydranlics, division and
multiplication problem, 157-158
Folded seales, 31, 41, 44 -50
for continued division and multiplica-
tion, 46 A
index, A0
logarithmie, 31, 44-50
LogLog scales, 128 ) e
for multiplication or d_ivisio'u);y , 41
relationship, partially gradiated scales,
45 "'\ 3
TFormula, dctermining\’em'pf:r, 140
Frame, 3—4 ‘®)
adjusting, 192
Funectional sca@,jl

Gas laws di%s‘i’on or tnultiplication prob-
1wty 151-152
tauge Toarks, trigonometrie seales, 89-90

N
RGN

division and multiptication BFQREWE
“dbraulibrgey.org in
Tlelsiey ‘

157-161
logarithmic and exponential calci-
lation problems, 171-178
right triangle problems, 105-10%
simple powers and roots, 161-166"
alide rule problems applicable 16,3157

158 S\
trigonometric ealoulationdy 166171
Equations: \¥

containing simple poyerior roots, 7682

exponential, 135136 4

quadratie, 77 FIB2

seale, 190-19 x y

solution ofT682, 84

three-varifible, 131-132

trigonamigtric, 100-111
Errof

per cent, 27

probable, 27-28
Expansion of metals, division and multi-

plication problem, 149

Exponential equations, 135-136
Fxponents:

logarithm principles and, 117-119

positive and negative, 123

Factoring operations, 117
Tactors:
bhest sequence of, 25
sommon, in multiplicat
42-44, 50-51

ion and division,

adjusting, 193
S Gradusation of scales, 7, 8, 26-27, 48

characieristies for simple power scales,
5%

in degrees and minutes, 87

folded simpic power and root seales, 56

Loglog scale, 123-129

major and minor graduations, 89

nature of, 8 .

gimple power and root seales, 5O

trigonometrie seales, 87

uaiform and non-uniform, 4—a

Graphic Aids in Engineering Computation

{ Hoetscher ot al.), In

Hairline, 3
checking, 192
Fandbook of Statistical Nomographs,
Tables and Formulus (Dunlap and
Kurtz), 143n
Harris, C. 0., 1Tn
Heat transfer:
logarithmic and cxponeniial
tions, 172
gimple powers and roots problem, 163
History of slide rules, 5
Hoelscher, R. P, 17

caleula-

Index:
CF and DF seales, 21
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Index (cont):
left and right, 133
Insurance, division and multiplication
problems, 144
Inverted secales, 3G—42
Investments, division and multiplication
problems, 44

Johnson, Lee H., 46

K seale, 7, 80
direct reading of powers and roots, 115
finding cube roots, 70
seale settings on, A8, 70
simple powers and roots, 55, 56
Kulmann, C. Albert, 76
Kurtz, Albert W., 143n

Law of cosines, 102
Law of sines, 103, 114

continued proportion from, 100, 114
Law of tangents, 102, 103
Left index, 133
Tight, trigonometric caleulations, 154
Logarithmic and exponential ealenlations:

chemical and physieal problems, 154 ¢

1 . . \
m@%ﬁﬁ%%@%mfﬁﬁ 178 o
statistical problems, 147-148 8 N

- Logarithmnie ealeulations, 117-1 39
Logarithmie scales:
name and construction Lqua,tlon 191
recognition of, 5, G, 48{“
Logarithms: " N
base far, 6, 118 \
to base ¢, 1181121, 129
t0 base 10, 148, 129
COmMImMon, 18
defined, 8¢ 18
divisi 11\5
cxpgnents and principles, 117-119
graphic logarithm of numbers, 5
ma.ntlsba., 119, 123
\multiplieation equation, 5

\ / natural, 118

of numbers by LogLog Scales, 129-131
powers and roots of numbers, 123. 126
problems, 126
rccognizing scales for, 137
seale suttings for, 120
aumberless than one raised to power,
134
table, 119
LogLog Duplex Decitrig slide rule, 181,
154
LogLog seales, 117-13%
aceuracy, 129
arrangement, 127-129
C zeale, 137

INDEX

Loglog seales (cont.):
decimal point location, 129
DF/u scale, 137
D scale, 137
fold points, 128
graduations, 128-129
logarithms of numbers by, 129--131
names of, and construction equations,
191
operation method, 127, 137
powers and roots of numbers using,
L13L1-135
operation method, 132 O\
prineiple, 127-129
for powers ol n umbor& 132
regding, 129 N
reciprocals, 135 . '\
recognizing, 1373
soale designagions, 128
sottings, 1»%9*130
simple Bowers and roots, 76
subseripts, 127, 137
ta I&&‘Uf fu_nctions, 137
slide rule, 119
&les, on 4
LogLog Trig slide rule, 181, 189
fuld point seale assovialions for Logl.og
seales, 128
Log scale, 119
decimal point location, 12%
D geale and, 137
equal eyele lengths, 3-53
with simple eyele-length ratios, 54- -85
Log sin seales, 86-116
Log tan scales, 86-116
Luabricating slide rule, 193

Machine design:
logarithmic and exponential caleula-
tions, 171-172
gimple powers and roots, 163, 164-1065
trigonometric calculations, 167, 170
Machine tocls, division and multipliea-
tion problems relating to, 158, 159
Maniphase Mannheim, slide rule, 181, 182
Manriphase Multiplex DL(‘mm} TI gz, ShdL
rule, 181, 185
?\'Iauipulation of slide rule, 12--13, 49-5U0
minimum settings, 77
moving runner, 13
two-hand eontrol, 13
Mannheim type slide rules, 7, 182
adjusting, 193
components of, -4
logarithmic seales, 7
Mantissa, 119, 123
Manual of the bizde Rule, A, (Thompson),
77
Mechanieal principle of the slide rule, -8
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Mechanics:
division and multiplication problem,
149, 158-159
logarithmic and exponential calcula-
tions, 154-155, 177-178
trigonometric caleulations,
167-16&8
Mental arithmetie, use with slide rule
operations, 28
Methed of operation (see Operation pro-
pedure}
Model 800 (slide rule), 187
Multiplication:
C and I) scale, 22-26
CI and C and D scale, 33-34
CT and 1) scales, 3839
common factors in, 42-44, 50-51
contipued, C and 1 scales, 20-36
folded scales for, 46
reversal of indices, 30
folded seales for multiplication by =
44
logarithmie prineiple for, o, 22
mathematieal prineiples, 5-6
numerical problems in, 26
recognition of scales for, 6, 48
simple powers and roots plus, T6-82

153-154,

three factors using D, CI and fheepldbraulibi ) Hgipl
T

140-41
two numbers, C and D seale, 22-246

Negative logarithmic seale, 37 Fa
Negalive power, number raised to,m]{(’é
Negative roots, 82 )
Nomographic Charts (Kulmanm, 76n

Opcrating statements, 190 ™

Operation procedure, 48° N\
¢ and D scale, 1370631921
eontinued div'\s;L@gjm &nd multiptication,

C and D,sogles, 20-36
cube root, 7O}
devising, 6,77
multi{;l;iq@tion, C and D seales, 22-26,
Lit)

goale Hquations, 190-191

selerting, using minimum gettings,
44, 77

simple powers and roots, 54-56

gine of an angls, 83

squarcs and square root, 60

41—

Physical chemistry:
Togarithmic and exponential caleula-

tions, 154-155
trigonometric caleulations, 153
Physics, slide rule problems relating to,
149-156
Pierce, 8. H., In
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Polyphasc Duplex sfide rule, 181, 183
Powers:
cubes (see Cubes)
fourth, 55-56, 73
fractional, 73
decimal point location, 7475
graduation characteristics for simple
power scales, 53
principle for Loglog acales for powers
of numbers, 152
scale designations and eyele lengths for
simple, 55-56
seale setting for number less than 1
raised to power, 134 <
simple, §4-85
operating procedures, 5456 , \\\
squares {see Bquares) 7\
Fowers and 1oots, 54-85 (sceqvlsa TRoots}
arrangement and notatightef"scales for
gimple powers androots, 59-60
equations cont-a.ining\sfmple powers or
roots, 76828,/
gradustion planfer folded simple power
and 10 alcs, 56
graduatip;&plan for non-folded simple
powers and roots, 57
logarighmie caleulations, 123126
126

ItH po and Toots, 36

ohumbers raised to negative power, 135
%3 problems on, 84-85

~

sixth powers and roots, 56, 73
statistical problems invelving, 145 -146
using LogLog scales for, 131-135
operation methed, 132
Principles, 1, 4-5, 48
mathematical, for division and multi-
plication, 5-6 -
mechanical, -5
Probsble error, defined, 27-28
Proportion, 35-36

Guadratic equations, 77, Bl
solution of, 81-82

Radians, 90, 97
Radio, division and multiplication prob-
lems, 150
Railways and highways, simple powers
and roots, 162
Ratio test, 8, 7, 61
Reading scale, 57
acouracy important, 2728
LogLog scales, 129
Reciprocals of numbers:
C and CI scales, 38
D scale, 38
smverted scales, 37
LogLog scale, 136
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Seales (cont.):
logarithmie:
folded, 31, 44-50
name and construction equation, 191
recognition of, 5-6, 48

Reciproeals of numbers (cont.):
sine and cosine, 92
Recognition of logarithmie scales, 5-6, 48
Tieversing indices, 30-31
Right index, 133

Right triangle methods, 102, 105-109 Loglog, 117-138 {see afso LogLog
problems, 105-107 seales)
Roots (see alzo Powers and roois) log scales:

with equal cyele lengths, 2, 3-53

arrangement and potation of scales, 59
cube, 6772 (see alse Cube reot)
deeimal point location, 60-61, 85-84
equations contalning simple powers or,
7682
eradustion plan for folded simple powaer
and root scales, 56
logarithmic caleulations, 123-126
problems, 126
negative, 82
numerical problems on square roots, 67
R secale for reading powers and roots,
115
geale degignations and eycle lengthys for
simple, 55- 56
dcale settings on A seale, 57
scale scttings of v~ or R scales, 58
simple, 54-85
operation procedures, 54-56
“’h\iﬁﬂ&@l"@é&hg@%& LR Hhuare root ) \
using ToglLog seales for, 131-135, %8
operation procedurs, 132 < ," ’
R scales, 80 N
dircet reading of powors apd Yeots, 115
powers and roots, 56 N
scale de31gna.t10ns L_YGlt, lengihs,
56 3{({
scale settings on, 53
Runner, 3-4
adjusting, 1 2 193
moving, 13 )

Heales: '\\
culcy \reot, scttings on, 59
dﬂﬁlgnatlons and their eycle lengths on
"\ slmple power and roet scales, 55—
4 ab
equations, 150-191
folded (see afse Folded seales)
logarithmie, 31, 44-50
for multiplication or division by =, 44
funectional, 1
graduations, 4-3, 7, &, 26-27, 48 (see
also Graduations}
in degrees and minutcs, 87
nature of, 8
pan for folded simple power and root
scales, Hb
identifying proper, 5
inverted, 36-42
negative logarithrie, 37

S

with simple cycle-length ratios, b4
85
log sin, 836-116
log tan, 86-116 \
position on selected comihgreial slide

rules, 181 N\
prineiple of, 86-88, 1{1 ’157
reading, 57 \,

accurate, 27 ,28
problems imy, hl- 32
rewgmtlon S 137
for diddsion and multiplication, 6, 48
sottings (spr’ Settings)
simple Jog, 86-116
tarigent, 86

¢theory of scale construction, 54-56
Jtrigonometrie, 86-116

name and construction cquation, 191
principle and arrangement of, 86--88,
111

Secants, 92
Sequenee of factors, 25
Bettings, scale, 9

Shuster, Carl X,

aceurate, 12-13, 26-29, 48

A seale, 57

cube root scales, 59

D seale, 9-11

“eguate lengths,’” 54

Inverted seale, 4244

K seale, 58

logarithms and antilogarithms, 120

LogLog seales, 123-130

wilth minimum slide rule manipulation,
41-44,

place Lhe(‘h mark after cach number of
sequence, 33

right triangle problem, 106

R scale, 58-59

square root scales, 58-59

tangents, 95

trigonometrie seale, 87

)

Similar simple number method, locating

decimal point, 23

Simple powers and roois, 54-85 (see alse

Powers; Rools)
cube roots, 70-72
cubes, 67-70
decimal point position, 60
engineering problems, 161-166
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Simple powers and roots (eont.}:
equations contlaining, 76-82
graduation of seales, 56-59
numerieal problems on eubes and eube

roots, 72-73
numerical problems on squares and
square root, 67
other simple powers and rools, 73-76
problems in chemistry and physies,
152-153
scale designations and their cyele
lengths, 55-66
square roots, 62-67
sguares, H9—62
stalistical problems involving, 145-146
theory of sesle construction, 54-56
Bin A, reading, 115
Sine of an angle, operating procedure, 88—
89

Hines, 8891
examples, 8891
law of, 103
problems on, 92-93
scale gettings for cosines and, 88-89

Sine scale, 87, 100-101
for angles up to 90°, 88, U5
complementary sngle marking for, 91
determining scales to uze, SV&W‘db
graduations, 112

glide, 34, 192-193 N

Slide rile: .
adjusting, 12, 192-193 &
hasic prineiples, 1 i i*,\
cleaning, 192-193 Eb\ W
commereinl, 8 (see alsp, Commercisl

slide rales) ne
history of, & KY
holding, 12-13 . L)
lubricating, 193,07
subtraction and addition, 4
theory of sdile’construction, 54-56
trianglessolved by, 87
typesygisd, 7, 182-189

Slidg’Rule; The (Johnson), 46n

szidz\ﬁzize Simplified (Harris), 17

found, division and multiplication preb-

letn, 149
Square Toot, 62-67 (see alse Powers and

roots)

algcbraic equation, 62

decimal point location, G3—64

diagram of operation and decimal point
Joeation on folded and non-folded
scales, 64

method of operation, 60, 63-84

trial method, 66-67

Qepuare root seale, 7, 55, 80
dircet reading of powers & rools, 115
seale desipnation and eycle lengths, 56

205

Sguares of numbers, 59-62
aligning scales for reading, 61-62
(I and D scales, 62
correction nuember method, 64-65
decimal point location, 60-61, 64-63,
8384
diagram of operation and decimal point
location on folded and non-folded
scales, 64
method of operation, 60
nimbers between 1 and 10, 61
numerical problems on sguare roots
and, 67 N\
one-digit numbers on folded scalesy 62
one-digit pumbers on non-folded scales,
651 e \ N
8 acale, 89-00, 107, 108 ™
Standard numbers: N
defined, 17
method for detel:;;ti{n\'ng decimal point
location, 1920, 23, 37
simple powersand roots, 83
Statistics: N\
division'émh multiplication problems,
145,
logdrithinic and exponential ealeulz-
\ tiong, 147

T aUIjmﬁ%‘}b%‘gdﬂer and root problems, 145-

146
* trigonometric caloulations, 146
Strengih of material, simple powers and
roots, 152
Structural design:
gimple powers and roots problems, 161
trigonometric caleulations, 166-167,
169-170 )
8T scalc, 59, 108
Stidy of the Problems in Teaching the
Siide Rule, A, (Shuster), 17a
Subseripts, 28, 61
Loglog scale, 127, 137
Substraction:
logarithmic, 49
slide rule for, 4
Suspension eable, 162-163

Tangents, $3-98

angles from 5.71° to 45°, 94

angles from 45° to 84.29°, 94, 95

angles greater than 90°, 96-97

decimal point location, 94, 95, 97

diagram of seales for reading and set-
ting, comnplementary T scale, 96

direct tangent scale for angles larger
than 45°, 94-95

large angles, 95

law of, 102, 103- 105

problems in, 99-100

scale settings for, 9%
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Tangents (coni):
small angle, 95, 97
Tangent scale, 86
C and I =cale, 93
complementary angle marking of, 94
detormining scales to use, 97
direct tangent scales for angles greater
than 45°%, 94
four sections, 93
graduations, 112
Ten-inch slide rle:
graduations, 8-9
L scale graduations, 120
trigonometric scales, 88, 112
Theory of zcale construciion, 534-56
Thermodynarmies:
division and multiplication problems
relating to, 158
logarithmic and exponential caleula-
tions, 171-172, 173-174, 175
simple powers and reots, 161, 162, 166
Thormometry, division and multiplica-
tion problem, 150
Thompson, J. ., 7in
Triangles:
given two sides and included angle, 108

Om%fﬂ%ﬂﬂﬂ’a ‘org.in ™
iaw of cosines, 11 A

law of sines, 114 &N
law of t&ngents, 114 N
operation procedure, 190-1a1
setting for, 101 \
right triangle methods,, 2102 105-109,
114 \\
problems, 1{35-14%
getting for, 100\
solved by slidemile, 87
Trigonometric 'c\q.uut,lous, 109-111
operation method, 108-111
Trlgnnomét{w functions and ealeulations,
86— 16
Lose(a}nts and secanis, 92
cmﬁms, 91
\optangents, 28-99

INDEX

Trigonometrie funetions and ealenlations
{cont.}:
engineering problems, 166-171
operation method, 8687, 113
problems on, 115—115
chemistry and physies, 153-154
reading sine A, 88-91, 113
reading tangent A, 99, 113
solution of oblique triangles, 100-105
operation proecdure, 100-101
golution of right triangles, 105-109
statistical problems involving,\l 46
tangents, 9398
triangle problem, given ‘a\w sides and
included angle, 108\.)
trigonometrie equatiohs; 109-111,
Trigonometrie scales by
arrangement, Df sS’?‘
decimal point‘position, 113
graduations, 88-112
in degrees; 87
uge,marks, 80-50
naméand construction equation, 191
0}394‘8.1:101’1 procedure, 113
wprinciple and arrangement, 86-88, 111-
112
range of scales, 91, 96, 98, 113
recognition of, 86-88, 112
scale settings for sines and cosines, 88
T seale, 94, 96, 98, 108
diagran of seales for reading and setting
cotangents of angles, 98
Twenty-inch slide rule, gradustions,
Two numbers, multiplying, C and D scale,
22-26, 49

115

Uniform and LogLog Seales, name and
constroelion equation, 191

Variables, relationship involving three,
131-132
“Veetor’ slide rule, 178
Versalog slide rule, 56, 181, 188
cubes, 69




TRIGONOMETRIC FUNCTIONS AND CALCULATIONS 111

Set, the right index of C to 3.9 on D

At 5% on ST read z = 0.340 on D

At20° on T read = = 1.42

At 40° on T read & = 3.28

et the hairline to 3.9 on D

Place 60° on "I {(comp) bencath the hairline
Read = 6.75 on D at the index

If o direct T scale in association with C is available, the latter three steps

for 60° are not necessary.
Obviously, multiplication of k& by any other of the trigonometric funes

tions can be performed in a manner like either the 3.9 tan 60° or.8'9/

{an 40° depending upon whether the function would be read on the &I or
C seales. o)

The foregoing examples solve for 2 when % and angle 4 g{qg’wen. If
z and k are the given quantities in W
‘\\,’

= t.an\’és

3

= gin A; 7 = cos 4;

=18
ol
ol

NN

the seales and the setting are the &&Mﬁ&lﬁ%ﬁﬁfﬂ!ﬁ{me of operations is
changed to N
At successive values of x “ )
Read angle A on the appropriate trigonometric scale

Examrin 3.12D. Calculét\és"?;r — gin® A4 for A =10° 20° 30°,
Solution:

Set the hairline g@i:gssively to 10°, 20°, 30°, on 8
Read on B 0{3&2, 0.117, and 0.25

The relationship O C scale to B (Chapter 2) permits direet reading of
Sin® 4 in this'way. It would be necessary 0 read the values of sin 4
aud re-s€{ 2o obtain sin? 4 if a siide rule not equipped with A or B scales
18 used, )

3.13. Summary, Chapter 3. The theoretical principie c?f the trigo-
nometric scales as well as practical matters of scale graduation, range of
application, and operating procedures are summarized, thus providing &
short review to the reader who has discontinued for a time the use of the
trigonometric scales of the slide rule. Also included is a review of t}lxe
slide rule solution of triangles. Article numbers and Figure numbers in
Patentheses refer t¢ more complete explanations and to exa.mp]e.s. .

L. Principle of Trigonometric Scales. (Art. 3.1) The basic trigo-
Nometric scales on the slide rule usually are the sine and tangent plai':ed
in association with one of the log seales (cften C) s0 that, by equating

Q"
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